【題目】 (1)①如圖1,已知AB∥CD,∠ABC=60°,可得∠BCD=_______°;
②如圖2,在①的條件下,如果CM平分∠BCD,則∠BCM=_________°;
③如圖3,在①、②的條件下,如果CN⊥CM,則∠BCN=___________°.
(2)、嘗試解決下面問(wèn)題:已知如圖4,AB∥CD,∠B=40°,CN是∠BCE的平分線, CN⊥CM,求∠BCM的度數(shù).
【答案】(1)、①60;②30;③60;(2)、20°
【解析】
試題分析:(1)、根據(jù)平行線的性質(zhì)以及角平分線、垂線的性質(zhì)得出角度的大小;(2)、根據(jù)平行線的性質(zhì)得出∠BCE=140°,根據(jù)角平分線的性質(zhì)得出∠BCN=70°,根據(jù)垂直的性質(zhì)得出∠BCM=20°.
試題解析:(1)、①60;②30;③60.
(2)、∵AB∥CD, ∴∠B+∠BCE=180°, ∵∠B=40°, ∴∠BCE=180°-∠B=180°-40°=140°.
∵CN是∠BCE的平分線, ∴∠BCN=140°÷2=70° ∵CN⊥CM, ∴∠BCM=90°-∠BCN=90°-70°=20°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑作半圓⊙O交AC與點(diǎn)D,點(diǎn)E為BC的中點(diǎn),連接DE.
(1)求證:DE是半圓⊙O的切線.
(2)若∠BAC=30°,DE=2,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀:在用尺規(guī)作線段等于線段時(shí),小明的具體做法如下:
已知:如圖,線段.
求作:線段,使得線段.
作法: ① 作射線;② 在射線上截取.∴線段為所求.
解決下列問(wèn)題:
已知:如圖,線段.
(1)、請(qǐng)你仿照小明的作法,在上圖中的射線上作線段,使得;(不要求寫(xiě)作法和結(jié)論,保留作圖痕跡)
(2)、在(1)的條件下,取的中點(diǎn).若,求線段的長(zhǎng).(要求:第(2)問(wèn)重新畫(huà)圖解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算中正確的是( )
A.2x+3y=5xy B.a(chǎn)3﹣a2=a
C.(a﹣1)(a﹣2)=a2+a﹣2 D.(a﹣ab)÷a=1﹣b
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】造房子時(shí),屋頂常用三角形結(jié)構(gòu),從數(shù)學(xué)角度來(lái)看,是應(yīng)用了__________,而活動(dòng)掛架則用了四邊形的__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形AOBC中,點(diǎn)A的坐標(biāo)是(﹣2,1),點(diǎn)C的縱坐標(biāo)是4,求B、C兩點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,F(xiàn)為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在BC上,且AE=CF;
(1)求證:Rt△ABE≌Rt△CBF;
(2)求證:AB=CE+BF;
(3)若∠CAE=30°,求∠ACF度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com