如圖,△ABC是邊長為4cm的等邊三角形,AD為BC邊上的高,點P沿BC向終點C運動,速度為1cm/s,點Q沿CA、AB向終點B運動,速度為2cm/s,若點P、Q兩點同時出發(fā),設(shè)它們的運動時間為x(s).
(l)求x為何值時,PQ⊥AC;x為何值時,PQ⊥AB?
(2)當O<x<2時,AD是否能平分△PQD的面積?若能,說出理由;
(3)探索以PQ為直徑的圓與AC的位置關(guān)系,請寫出相應(yīng)位置關(guān)系的x的取值范圍(不要求寫出過程).
分析:(1)若使PQ⊥AC,則根據(jù)路程=速度×時間表示出CP和CQ的長,再根據(jù)30度的直角三角形的性質(zhì)列方程求解;
若使PQ⊥AB,則根據(jù)路程=速度×時間表示出BP,BQ的長,再根據(jù)30度的直角三角形的性質(zhì)列方程求解;
(2)根據(jù)三角形的面積公式,要證明AD平分△PQD的面積,只需證明O是PQ的中點.根據(jù)題意可以證明BP=CN,則PD=DN,再根據(jù)平行線等分線段定理即可證明;
(3)根據(jù)(1)中求得的值即可分情況進行討論.
解答:解:(1)當Q在AB上時,顯然PQ不垂直于AC,
當Q在AC上時,由題意得,BP=x,CQ=2x,PC=4-x;
∵AB=BC=CA=4,
∴∠C=60°;
若PQ⊥AC,則有∠QPC=30°,
∴PC=2CQ,
∴4-x=2×2x,
∴x=
4
5
;
當x=
4
5
(Q在AC上)時,PQ⊥AC;
如圖:①
當PQ⊥AB時,BP=x,BQ=
1
2
x,AC+AQ=2x;
∵AC=4,
∴AQ=2x-4,
∴2x-4+
1
2
x=4,
∴x=
16
5
,
故x=
16
5
時PQ⊥AB;

(2)當0<x<2時,在Rt△QNC中,QC=2x,∠C=60°;
∴NC=x,
∴BP=NC,
∵BD=CD,
∴DP=DN;
∵AD⊥BC,QN⊥BC,
∴DP=DN;
∵AD⊥BC,QN⊥BC,
∴AD∥QN,
∴OP=OQ,
∴S△PDO=S△DQO,
∴AD平分△PQD的面積;

(3)顯然,不存在x的值,使得以PQ為直徑的圓與AC相離,
當x=
4
5
16
5
時,以PQ為直徑的圓與AC相切,
當0≤x<
4
5
4
5
<x<
16
5
16
5
<x≤4時,以PQ為直徑的圓與AC相交.
點評:此題綜合運用了等邊三角形的性質(zhì)、直角三角形的性質(zhì)以及直線和圓的位置關(guān)系求解.解題的關(guān)鍵是用動點的時間x和速度表示線段的長度,本題有一定的綜合性,難度中等.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC是邊長為a的等邊三角形,O為△ABC的中心.將△ABC繞著中心O旋轉(zhuǎn)120°.
①直接寫出△ABC的內(nèi)切圓半徑r和外接圓半徑R分別是多少?
②設(shè)點D、E、F分別在邊AB、BC、CA上,且AD=2DB,BE=2EC,CF=2FA,試畫出△DEF,說明它的形狀,并計算它的周長;
③根據(jù)“線動成面”的道理,△ABC的三條邊AB、BC和CA在旋轉(zhuǎn)過程中掃過的部分組成的平面圖形的形狀是什么?并計算出此圖形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•遵義)如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.
(1)當∠BQD=30°時,求AP的長;
(2)當運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•溧水縣一模)如圖,△ABC是邊長為4的等邊三角形,將△ABC沿直線BC向右平移,使B點與C點重合,得到△DCE,連結(jié)BD,交AC于F.
(1)猜想BD與DE的位置關(guān)系,并證明你的結(jié)論;
(2)求△BDE的面積S.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•湘潭)如圖,△ABC是邊長為3的等邊三角形,將△ABC沿直線BC向右平移,使B點與C點重合,得到△DCE,連接BD,交AC于F.
(1)猜想AC與BD的位置關(guān)系,并證明你的結(jié)論;
(2)求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是邊長為3的等邊三角形,△BDC是等腰三角形,且∠BDC=120°,以D為頂點做一個60°角,使其兩邊分別交AB于點M,交AC于點N,連接MN,則△AMN的周長為
6
6

查看答案和解析>>

同步練習冊答案