二次函數(shù)y=-
1
2
x2+
3
2
x+m-2
的圖象與x軸交于A、兩點(diǎn)(點(diǎn)A在點(diǎn)B左邊),與y軸交于C點(diǎn),且∠ACB=90°.
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)計(jì)兩種方案:作一條與y軸不重合,與△A BC兩邊相交的直線,使截得的三角形與△ABC相似,并且面積為△BOC面積的
1
4
,寫出所截得的三角形三個(gè)頂點(diǎn)的坐標(biāo)(注:設(shè)計(jì)的方案不必證明).
分析:(1)A、B、C三點(diǎn)坐標(biāo)可用m的代數(shù)式表示,利用相似三角形性質(zhì)建立含m的方程;
(2)通過特殊點(diǎn),構(gòu)造相似三角形基本圖形,確定設(shè)計(jì)方案.
解答:解:(1)設(shè)A(x1,0),B(X2,0),則x1x2=-2(m-2),OA=-X1,OB=x2,
又C(0,m-2),則OC=m-2,精英家教網(wǎng)
由△AOC∽△COB,得OC2=OA•OB=-x1x2
即(m-2)2=2(m-2),又m-2>0,
∴m=4,得y=-
1
2
x2-
3
2
x+ 2


(2)方案一:分別取OB,BC的中點(diǎn)O1,C1,連接O1C1,
可得△BO1C1三個(gè)頂點(diǎn)的坐標(biāo),B(4,0),O1(2,0),C1(2,1)
方案二:在AB上取AB2=AC=
5
,在AC上取AO2=AO=1,作直線O2B2
可得△B2O2A三個(gè)頂點(diǎn)的坐標(biāo),B2(
5
-1,0)
O2(-1+
5
5
,
2
5
5
)
,A(-1,0).
點(diǎn)評(píng):此題主要考查了解函數(shù)與幾何結(jié)合的綜合題,善于求點(diǎn)的坐標(biāo),進(jìn)而求出函數(shù)解析式是解題的基礎(chǔ);而充分發(fā)揮形的因素,數(shù)形互助,把證明與計(jì)算相結(jié)合是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知關(guān)于x的一元二次方程2x2+4x+k-1=0有實(shí)數(shù)根,k為正整數(shù).
(1)求k的值;
(2)當(dāng)此方程有兩個(gè)非零的整數(shù)根時(shí),將關(guān)于x的二次函數(shù)y=2x2+4x+k-1的圖象向下平移8個(gè)單位,求平移后的圖象的解析式;
(3)在(2)的條件下,將平移后的二次函數(shù)的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象.請(qǐng)你結(jié)合這個(gè)新的圖象回答:當(dāng)直線y=
12
x+b(b<k)與此圖象有兩個(gè)公共點(diǎn)時(shí),b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將二次函數(shù)y=2x2的圖象先向右平移3個(gè)單位后所得拋物線的解析式
y=2x2-12x+18
y=2x2-12x+18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=x2-2mx+m2-4的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),且與y軸交于點(diǎn)D.
(1)當(dāng)點(diǎn)D在y軸正半軸時(shí),是否存在實(shí)數(shù)m,使得△BOD為等腰三角形?若存在,求出m的值;若不存在,請(qǐng)說明理由;
(2)當(dāng)m=-1時(shí),將函數(shù)y=x2-2mx+m2-4的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象Ω.當(dāng)直線y=
12
x+b
與圖象Ω有兩個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)(-1,0),(2,0),當(dāng)y隨x的增大而減小時(shí),x的取值范圍是
x<
1
2
x<
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=x2+px+q圖象的頂點(diǎn)M為直線y=
12
x
與y=-x+m的交點(diǎn),
(1)用含m的代數(shù)式來表示點(diǎn)M的坐標(biāo);
(2)若二次函數(shù)y=x2+px+q圖象經(jīng)過A(0,3),求二次函數(shù)y=x2+px+q的解析式;
(3)在(2)中的二次函數(shù)y=x2+px+q的圖象與x軸有兩個(gè)交點(diǎn),設(shè)與x軸的左交點(diǎn)為B,點(diǎn)P為拋物線對(duì)稱軸上一點(diǎn),若△PAB為直角三角形,請(qǐng)求出所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案