已知a,b,c是全不相等的正實(shí)數(shù),求證:++>3.

【證明】方法一:要證++>3,

只需證明+-1++-1++-1>3,

即證:+++++>6.

由a,b,c為全不相等的正實(shí)數(shù)得

+>2,+>2,+>2,

+++++>6,

++>3成立.

方法二:∵a,b,c全不相等,

,,全不相等,

+>2,+>2,+>2,

三式相加得+++++>6,

∴(+-1)+(+-1)+(+-1)>3,

++>3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、已知a、b是不全為零的實(shí)數(shù),則關(guān)于x的方程x2+(a+b)x+a2+b2=0的根的情況為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知x1,x2是關(guān)于x的方程(x-2)(x-m)=(p-2)(p-m)的兩個(gè)實(shí)數(shù)根.
(1)求x1,x2的值;
(2)若p=3,設(shè)x1,x2是斜邊為5的直角三角形的兩直角邊的長(zhǎng),求m的值;
(3)在(2)的條件下,用得到的兩個(gè)全等的直角三角形可以拼成哪些凸四邊形?分別畫(huà)出示意圖,并在圖上標(biāo)注出不重合的兩個(gè)對(duì)應(yīng)定點(diǎn)之間的線段長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省湖州市長(zhǎng)興縣實(shí)驗(yàn)初中九年級(jí)下學(xué)期期中調(diào)研數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,已知拋物線(b是實(shí)數(shù)且b>2)與x軸的正半軸分別交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸的正半軸交于點(diǎn)C.

(1)點(diǎn)B的坐標(biāo)為      ,點(diǎn)C的坐標(biāo)為      (用含b的代數(shù)式表示);
(2)若b=8,請(qǐng)你在拋物線上找點(diǎn)P,使得△PAC是直角三角形?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
(3)請(qǐng)你探索,在(1)的結(jié)論下,在第一象限內(nèi)是否存在點(diǎn)Q,使得△QCO、△QOA和△QAB中的任意兩個(gè)三角形均相似(全等可看作相似的特殊情況)如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(江蘇蘇州卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,已知拋物線(b是實(shí)數(shù)且b>2)與x軸的正半軸分別交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸的正半軸交于點(diǎn)C.

1.點(diǎn)B的坐標(biāo)為  ▲  ,點(diǎn)C的坐標(biāo)為  ▲  (用含b的代數(shù)式表示);

2.請(qǐng)你探索在第一象限內(nèi)是否存在點(diǎn)P,使得四邊形PCOB的面積等于2b,且△PBC是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;

3.請(qǐng)你進(jìn)一步探索在第一象限內(nèi)是否存在點(diǎn)Q,使得△QCO、△QOA和△QAB中的任意兩個(gè)三角形均相似(全等可看作相似的特殊情況)?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案