小明對數(shù)學很有興趣,一日看到一則計算:
1
1×3
+
1
3×5
+
1
5×7
+…+
1
97×99
后,
分析:
1
n(n+2)
=
1
2
×
2
n(n+2)
=
1
2
×
(n+2)-n
n(n+2)
=
1
2
(
n+2
n(n+2)
-
n
n(n+2)
)=
1
2
(
1
n
-
1
n+2
)
得:
1
1×3
+
1
3×5
+
1
5×7
+…+
1
97×99
=
1
2
(1-
1
3
)+
1
2
(
1
3
-
1
5
)+
1
2
(
1
5
-
1
7
)+…+
1
2
(
1
97
-
1
99
)
=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
97
-
1
99
)
=
1
2
(1-
1
99
)=
1
2
×
98
99
=
49
99

試求:(1)
1
2×4
+
1
4×6
+
1
6×8
+…+
1
98×100

(2)
1
9×13
+
1
13×17
+
1
17×21
+…+
1
97×101
分析:(1)根據(jù)題目信息,分母上的兩因數(shù)的差是2,所以裂項后乘以
1
2
,然后進行計算即可;
(2)根據(jù)題目信息,分母上的兩因數(shù)的差是4,所以裂項后乘以
1
4
,然后進行計算即可.
解答:解:(1)
1
2×4
+
1
4×6
+
1
6×8
+…+
1
98×100

=
1
2
1
2
-
1
4
)+
1
2
1
4
-
1
6
)+
1
2
1
6
-
1
8
)+…+
1
2
1
98
-
1
100
),
=
1
2
1
2
-
1
4
+
1
4
-
1
6
+
1
6
-
1
8
+…+
1
98
-
1
100
),
=
1
2
1
2
-
1
100
),
=
1
2
×
98
200
,
=
49
200


(2)
1
9×13
+
1
13×17
+
1
17×21
+…+
1
97×101
,
=
1
4
1
9
-
1
13
)+
1
4
1
13
-
1
17
)+
1
4
1
17
-
1
21
)+…+
1
4
1
97
-
1
101
),
=
1
4
1
9
-
1
13
+
1
13
-
1
17
+
1
17
-
1
21
+…+
1
97
-
1
101
),
=
1
4
1
9
-
1
101
),
=
1
4
×
92
909

=
23
909
點評:本題考查了有理數(shù)的混合運算,讀懂題目信息,根據(jù)題目提供的信息進行裂項并加減抵消是解題的關鍵,技巧性較強,難度中等.
練習冊系列答案
相關習題

同步練習冊答案