【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于H,G為⊙O上一點(diǎn),AG交CD于K,E為CD延長(zhǎng)線上一點(diǎn),且EK=EG,EG的延長(zhǎng)線交AB的延長(zhǎng)線于F.
(1)求證:EF為⊙O的切線;
(2)若DK=2HK=AK,CH= ,求圖中陰影部分的面積S.

【答案】
(1)證明:連接OG,如圖1所示:

∵弦CD⊥AB于點(diǎn)H,

∴∠AHK=90°,

∴∠HKA+∠KAH=90°,

∵EG=EK,

∴∠EGK=∠EKG,

∵∠HKA=∠GKE,

∴∠HAK+∠KGE=90°,

∵AO=GO,

∴∠OAG=∠OGA,

∴∠OGA+∠KGE=90°,

∴GO⊥EF,

∴EF是⊙O的切線


(2)解:∵CD⊥AB,

∴DH=CH= ,

∵DK=2HK=AK,

∴∠HAK=30°,HK= DH=

∴AH= HK=

連接OD,如圖2所示:

設(shè)⊙O的半徑為R,

在Rt△ODH中,由勾股定理得:( 2+(R﹣ 2=R2

解得:R=2 ,

∴OH=OA﹣AH= = OD,

∴∠ODH=30°,△ODH的面積= OHDH= × × = ,

∴∠DOH=60°,

∴∠BOD=120°,

∴扇形OBGD的面積= = ,

∵OA=OG,

∴∠OGA=∠HAK=30°,

∴∠EGK=90°﹣30°=60°,

又∵EK=EG,

∴△GEK是等邊三角形,

∴∠E=60°,

∴∠F=90°﹣60°=30°,

∵GO⊥EF,

∴OF=2OG=4 ,

∴HF=OH+OF=5 ,

∴HE= HF= ,

∴△EFH的面積= HFHE= ×5 × =

∴圖中陰影部分的面積S= =


【解析】(1)連接OG,首先證明∠EGK=∠EKG,再證明∠HAK+∠KGE=90°,進(jìn)而得到∠OGA+∠KGE=90°即GO⊥EF,進(jìn)而證明EF是⊙O的切線;(2)與已知條件得出∠HAK=30°,HK= DH= ,AH= HK= ,連接OD,設(shè)⊙O的半徑為R,在Rt△ODH中,由勾股定理得出方程,解方程求出半徑,得出OH= OD,求出∠ODH=30°,△ODH的面積= ,再求出∠BOD=120°,得出扇形OBGD的面積= ,證明△GEK是等邊三角形,求出OF=2OG=4 ,得出HF=OH+OF=5 ,求出HE= ,計(jì)算出△EFH的面積,即可得出結(jié)果.
【考點(diǎn)精析】關(guān)于本題考查的垂徑定理和扇形面積計(jì)算公式,需要了解垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,由下列條件可判定哪兩條直線平行,并說(shuō)明根據(jù).

(1)1=2,________________________

(2)A=3,________________________

(3)ABC+C=180°,________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下列證明:如圖,已知,,

求證:

證明:,(已知)

_____________________

(等量代換)

_______________________

__________________________

(已知)

_______________(等量代換)

_____________________________

____________________).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為菱形,E為對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),連結(jié)DE并延長(zhǎng)交射線AB于點(diǎn)F,連結(jié)BE

1)求證:∠AFD=EBC;

2)若∠DAB=90°,當(dāng)BEF為等腰三角形時(shí),求∠EFB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC三條邊的長(zhǎng)度分別是,,,記△ABC的周長(zhǎng)為CABC

1)當(dāng)x2時(shí),△ABC的最長(zhǎng)邊的長(zhǎng)度是   (請(qǐng)直接寫(xiě)出答案);

2)請(qǐng)求出CABC(用含x的代數(shù)式表示,結(jié)果要求化簡(jiǎn));

3)我國(guó)南宋時(shí)期數(shù)學(xué)家秦九韶曾提出利用三角形的三邊長(zhǎng)求面積的秦九韶公式:S.其中三角形邊長(zhǎng)分別為a,b,c,三角形的面積為S

x為整數(shù),當(dāng)CABC取得最大值時(shí),請(qǐng)用秦九韶公式求出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD的面積為20,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別是AB,CD上的點(diǎn),且AE=DF,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校學(xué)生在電腦培訓(xùn)前后各參加了一次水平相同的考試,考分都以同一標(biāo)準(zhǔn)劃分成不合格、合格、優(yōu)秀三個(gè)等級(jí).為了了解電腦培訓(xùn)的效果,隨機(jī)抽取其中32名學(xué)生兩次考試考分等級(jí)制成統(tǒng)計(jì)圖(如圖),試回答下列問(wèn)題:

(1)32名學(xué)生經(jīng)過(guò)培訓(xùn),考分等級(jí)不合格的百分比由________下降到________;

(2)估計(jì)該校640名學(xué)生,培訓(xùn)后考分等級(jí)為合格優(yōu)秀的學(xué)生共有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),分別以直角△ABC的三邊為直徑向外作三個(gè)半圓,其面積分別用S1、S2、S3表示,則不難說(shuō)明S1=S2+S3。(1)如圖(2),分別以直角△ABC三邊為一邊向外作三個(gè)正方形,其面積分別用S1、S2、S3表示,那么S1、S2、S3之間有什么關(guān)系?(2)如圖(3),若分別以直角△ABC三邊為一邊向外作三個(gè)正三角形,其面積分別用S1、S2、S3表示,試確定S1、S2、S3之間的關(guān)系并加以說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OA,OC分別在x軸、y軸上,點(diǎn)B坐標(biāo)為(4,t)(t>0),二次函數(shù)y=x2+bx(b<0)的圖象經(jīng)過(guò)點(diǎn)B,頂點(diǎn)為點(diǎn)D.

(1)當(dāng)t=12時(shí),頂點(diǎn)D到x軸的距離等于
(2)點(diǎn)E是二次函數(shù)y=x2+bx(b<0)的圖象與x軸的一個(gè)公共點(diǎn)(點(diǎn)E與點(diǎn)O不重合),求OEEA的最大值及取得最大值時(shí)的二次函數(shù)表達(dá)式;
(3)矩形OABC的對(duì)角線OB、AC交于點(diǎn)F,直線l平行于x軸,交二次函數(shù)y=x2+bx(b<0)的圖象于點(diǎn)M、N,連接DM、DN,當(dāng)△DMN≌△FOC時(shí),求t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案