【題目】在某張三角形紙片上,取其一邊的中點,沿著過這點的兩條中位線分別剪去兩個三角形,剩下的部分就是如圖所示的四邊形;經(jīng)測量這個四邊形的相鄰兩邊長為10cm,6cm,一條對角線的長為8cm;則原三角形紙片的周長是_______

【答案】48cm或(32+8)cm

【解析】分析: 首先補全三角形進(jìn)而利用平行四邊形的性質(zhì)得出各邊長進(jìn)而得出答案,解答本題應(yīng)分兩種情況進(jìn)行

詳解: 如圖1:

周長為:2×(10+8+6)=48(cm);

如圖2:

BD=6,BC=8,CD=10,

BD2+BC2=CD2,

∴△BCD是直角三角形,

∴∴ACB=∠CBD=90°,

Rt△ABC中,由勾股定理得,

AB=,

∴周長為2×(10+4+6)=(32+8)(cm);

綜上所述:原三角形紙片的周長是48(32+8)cm.

故答案為:48或(32+8)cm.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料.

點M,N在數(shù)軸上分別表示數(shù)m和n,我們把m,n之差的絕對值叫做點M,N之間的距離,即MN=|m﹣n|.如圖,在數(shù)軸上,點A,B,O,C,D的位置如圖所示,則DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.

(1)OA=  ,BD=  ;

(2)|1﹣(﹣4)|表示哪兩點的距離?

(3)點P為數(shù)軸上一點,其表示的數(shù)為x,用含有x的式子表示BP=  ,當(dāng)BP=4時,x=  ;當(dāng)|x﹣3|+|x+2|的值最小時,x的取值范圍是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)們,足球是世界上第一大運動,你熱愛足球運動嗎?已知在足球比賽中,勝一場得3分,平一場得1分,負(fù)一場得0分,一隊共踢了30場比賽,負(fù)了9場,共得47分,那么這個隊勝了( 。

A. 10 B. 11 C. 12 D. 13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列方程(1)=2;(2)5x﹣2=2x﹣(3﹣2x);(3)xy=5;(4)=﹣2;(5)x2﹣x=1;(6)x=0中一元一次方程有( 。

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平面直角坐標(biāo)系中,直線AB:y=﹣x+bx軸于點A(8,0),交y軸正半軸于點B.

(1)求點B的坐標(biāo);

(2)如圖2,直線ACy軸負(fù)半軸于點C,AB=BC,P為線段AB上一點,過點Py軸的平行線交直線AC于點Q,設(shè)點P的橫坐標(biāo)為t,線段PQ的長為d,求dt之間的函數(shù)關(guān)系式;

(3)(2)的條件下,MCA延長線上一點,且AM=CQ,在直線AC上方的直線AB上是否存在點N,使QMN是以QM為斜邊的等腰直角三角形?若存在,請求出點N的坐標(biāo)及PN的長度;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)們,足球是世界上第一大運動,你熱愛足球運動嗎?已知在足球比賽中,勝一場得3分,平一場得1分,負(fù)一場得0分,一隊共踢了30場比賽,負(fù)了9場,共得47分,那么這個隊勝了( 。

A. 10 B. 11 C. 12 D. 13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘船以每小時30海里的速度向北偏東75°方向航行,在點A處測得碼頭C在船的東北方向,航行40分鐘后到達(dá)B處,這時碼頭C恰好在船的正北方向,在船不改變航向的情況下,求出船在航行過程中與碼頭C的最近距離.(結(jié)果精確的0.1海里,參考數(shù)據(jù) ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】百貨商店銷售某種冰箱,每臺進(jìn)價2500元。市場調(diào)研表明:當(dāng)銷售價為2900元時,平均每天能售出8臺;每臺售價每降低10元時,平均每天能多售出1臺。(銷售利潤=銷售價進(jìn)價)

(1)如果設(shè)每臺冰箱降價x元,那么每臺冰箱的銷售利潤為 元,平均每天可銷售冰箱 臺;(用含x的代數(shù)式表示)

(2)商店想要使這種冰箱的銷售利潤平均每天達(dá)到5600元,且盡可能地清空冰箱庫存,每臺冰箱的定價應(yīng)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】荊崗中學(xué)決定在本校學(xué)生中,開展足球、籃球、羽毛球、乒乓球四種活動,為了了解學(xué)生對這四種活動的喜愛情況,學(xué)校隨機調(diào)查了該校m名學(xué)生,看他們喜愛哪一種活動(每名學(xué)生必選一種且只能從這四種活動中選擇一種),現(xiàn)將調(diào)查的結(jié)果繪制成如下不完整的統(tǒng)計圖.
(1)m= , n=;
(2)請補全圖中的條形圖;
(3)根據(jù)抽樣調(diào)查的結(jié)果,請估算全校1800名學(xué)生中,大約有多少人喜愛踢足球;
(4)在抽查的m名學(xué)生中,喜愛乒乓球的有10名同學(xué)(其中有4名女生,包括小紅、小梅),現(xiàn)將喜愛打乒乓球的同學(xué)平均分成兩組進(jìn)行訓(xùn)練,且女生每組分兩人,求小紅、小梅能分在同一組的概率.

查看答案和解析>>

同步練習(xí)冊答案