如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且對稱軸為x=1,點(diǎn)A坐標(biāo)為(-1,0).則下面的四個結(jié)論:
①2a+b=0;②4a+2b+c>0;③B點(diǎn)坐標(biāo)為(4,0);④當(dāng)x<-1時,y>0.
其中正確的是( 。
A.①②      B.③④      C.①④      D.②③
C

試題分析:∵對稱軸為x=1,
 ,
∴-b=2a,
∴2a+b=0,故①正確;
∵拋物線與y軸交于負(fù)半軸,即x=0時,y<0,
又對稱軸為x=1,
∴x=2時,y<0,
∴4a+2b+c<0,故②錯誤;
∵點(diǎn)A坐標(biāo)為(-1,0),對稱軸為x=1,
∴點(diǎn)B坐標(biāo)為(3,0),故③錯誤;
由圖象可知當(dāng)x<-1時,y>0.故④正確.
故選:C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,若拋物線Y=X2  改為拋物線Y= X2+BX+C 其他條件不變  求矩形ABCD的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD中,AB=20,BC=10,點(diǎn)P為AB邊上一動點(diǎn),DP交AC于點(diǎn)Q.
(1)求證:△APQ∽△CDQ;
(2)P點(diǎn)從A點(diǎn)出發(fā)沿AB邊以每秒1個單位的速度向B點(diǎn)移動,移動時間為t秒.
①當(dāng)t為何值時,DP⊥AC?
②設(shè),寫出y與t之間的函數(shù)解析式,并探究P點(diǎn)運(yùn)動到第幾秒到第幾秒之間時,y取得最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)D為拋物線的頂點(diǎn),點(diǎn)E在拋物線上,點(diǎn)F在x軸上,四邊形OCEF為矩形,且OF=2,EF=3,
(1)求拋物線所對應(yīng)的函數(shù)解析式;
(2)求△ABD的面積;
(3)將△AOC繞點(diǎn)C逆時針旋轉(zhuǎn)90°,點(diǎn)A對應(yīng)點(diǎn)為點(diǎn)G,問點(diǎn)G是否在該拋物線上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

小明同學(xué)將直角三角板直角頂點(diǎn)置于平面直角坐標(biāo)系的原點(diǎn)O,兩直角邊與拋物線分別相交于A、B兩點(diǎn).小明發(fā)現(xiàn)交點(diǎn)A、B兩點(diǎn)的連線總經(jīng)過一個固定點(diǎn),則該點(diǎn)坐標(biāo)為            

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)y=ax2+2ax+b的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C(0,),其頂點(diǎn)在直線y=-2x上.
(1)求a,b的值;
(2)寫出當(dāng)-2≤x≤2時,二次函數(shù)y的取值范圍;
(3)以AC、CB為一組鄰邊作□ACBD,則點(diǎn)D關(guān)于x軸的對稱點(diǎn)D’是否在該二次函數(shù)的圖象上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0),頂點(diǎn)坐標(biāo)為(1,n),與y軸的交點(diǎn)在(0,2)、(0,3)之間(包含端點(diǎn)),則下列結(jié)論:①當(dāng)x>3時,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正確的是(  )。
A.①②B.③④C.①④D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)在同一直角坐標(biāo)系中的圖象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知的圖象如圖所示,其對稱軸為直線x=-1,與x軸的一個交點(diǎn)為(1,0),與y軸的交點(diǎn)在(0,2)與(0,3)之間(不包含端點(diǎn)),則下列結(jié)論正確的是(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案