若已知CD是Rt△ABC斜邊AB上的高,AC=8,BC=6,則cos∠BCD的值是(   )

A.              B.               C.               D.

 

【答案】

A

【解析】

試題分析:由勾股定理得,

由同角的余角相等知,∠BCD=∠A.

考點:三角函數(shù)的運用,勾股定理

點評:難度小,掌握三角函數(shù)的定義是關(guān)鍵。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:在Rt△ABC中,∠ABC=90°,D是AC的中點,⊙O經(jīng)過A、D、B三點,CB的延長線交⊙O于點E(如圖1).
在滿足上述條件的情況下,當(dāng)∠CAB的大小變化時,圖形也隨著改變(如圖2),在這個變化過程中,有些線段總保持著相等的關(guān)系.
(1)觀察上述圖形,連接圖2中已標(biāo)明字母的某兩點,得到一條新線段精英家教網(wǎng)與線段CE相等,請說明理由;
(2)在圖2中,過點E作⊙O的切線,交AC的延長線于點F.
①若CF=CD,求sin∠CAB的值;
②若
CFCD
=n(n>0),試用含n的代數(shù)式表示sin∠CAB(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在Rt△ABC中,∠BCA=90°,AC=3,BC=4,CD是斜邊AB邊上的高,點E、F分別是AC、BC邊上的動點,連接DE、DF、EF,且∠EDF=90°.

(1)當(dāng)四邊形CEDF是矩形時(如圖1),試求EF的長并直接判斷△DEF與△DAC是否相似.
(2)在點E、F運動過程中(如圖2),△DEF與△DAC相似嗎?請說明理由;
(3)設(shè)直線DF與直線AC相交于點G,△EFG能否為等腰三角形?若能,請直接寫出線段AE的長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,CD是Rt△FBE的中位線,A是EB延長線上一點,AD∥BC.
(1)證明四邊形ABCD是平行四邊形.
(2)若AD=3cm,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆浙江省杭州市高橋初中教育集團九年級第二學(xué)期期初質(zhì)量檢測數(shù)學(xué)卷(帶解析) 題型:單選題

若已知CD是Rt△ABC斜邊AB上的高,AC=8,BC=6,則cos∠BCD的值是(   )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案