如圖所示,在平面直角坐標(biāo)系xOy中,矩形OABC的邊長OA、OC分別為12cm、6cm,點A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點A、B,且18a+c=0.
(1)求拋物線的解析式.
(2)如果點P由點A開始沿AB邊以1cm/s的速度向終點B移動,同時點Q由點B開始沿BC邊以2cm/s的速度向終點C移動.
①移動開始后第t秒時,設(shè)△PBQ的面積為S,試寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍.
②當(dāng)S取得最大值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出R點的坐標(biāo);如果不存在,請說明理由.
(1)(2)①S=(t-3)2+9(0<t<6)②點R坐標(biāo)為(3,﹣18)
【解析】解:(1)設(shè)拋物線的解析式為y=ax2+bx+c,
由題意知點A(0,﹣12),
所以c=﹣12,
又18a+c=0,
,
∵AB∥OC,且AB=6,
∴拋物線的對稱軸是,
∴b=﹣4,
所以拋物線的解析式為;
(2)①,(0<t<6)
②當(dāng)t=3時,S取最大值為9.
這時點P的坐標(biāo)(3,﹣12),
點Q坐標(biāo)(6,﹣6)
若以P、B、Q、R為頂點的四邊形是平行四邊形,有如下三種情況:
(Ⅰ)當(dāng)點R在BQ的左邊,且在PB下方時,點R的坐標(biāo)(3,﹣18),將(3,﹣18)代入拋物線的解析式中,滿足解析式,所以存在,點R的坐標(biāo)就是(3,﹣18),
(Ⅱ)當(dāng)點R在BQ的左邊,且在PB上方時,點R的坐標(biāo)(3,﹣6),將(3,﹣6)代入拋物線的解析式中,不滿足解析式,所以點R不滿足條件.
(Ⅲ)當(dāng)點R在BQ的右邊,且在PB上方時,點R的坐標(biāo)(9,﹣6),將(9,﹣6)代入拋物線的解析式中,不滿足解析式,所以點R不滿足條件.
綜上所述,點R坐標(biāo)為(3,﹣18).
科目:初中數(shù)學(xué) 來源: 題型:
9 | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com