精英家教網(wǎng)如圖,直線l過正方形ABCD的頂點(diǎn)B,點(diǎn)A、C到直線l的距離分別是a和b,則正方形的邊長是
 
分析:根據(jù)AAS可以證明△ABE≌△BCF,得BE=CF=b,根據(jù)勾股定理求得直角三角形ABE斜邊的平方,即為正方形的面積,從而可求出正方形的邊長.
解答:解:∵四邊形ABCD是正方形,
∴AB=CB,∠ABC=90°,
又AE⊥l,CF⊥l,
則∠AEB=∠BCF=90°,
∴∠A=∠CBF,
∴△ABE≌△BCF.
∴BE=CF=b.
則正方形的面積=AB2=AE2+BE2=a2+b2
∴正方形的邊長=
a2+b2

故答案為
a2+b2
點(diǎn)評(píng):本題考查了正方形各邊相等的性質(zhì),考查了直角三角形中勾股定理的運(yùn)用,本題中求證△ABE≌△BCF是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線L過正方形ABCD的頂點(diǎn)B,點(diǎn)A、C到直線L的距離分別是1和2,則正方形的邊長是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,直線l過正方形ABCD的頂點(diǎn)D,過A、C分別作直線l的垂線,垂足分別為E、F.若AE=4a,CF=a,則正方形ABCD的面積為
17a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線l過正方形ABCD的頂點(diǎn)B,點(diǎn)A,C到直線l的距離分別為1和2,則正方形的邊長是( 。
A、2
B、
5
C、3
D、
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線d過正方形ABCD的頂點(diǎn)B,點(diǎn)A,C到直線d的距離分別是
2
和2
2
,求正方形ABCD的對(duì)角線AC的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案