【題目】如圖,已知,∠3=∠B,∠1+∠2=180°,∠AED=∠C大小相等嗎?請說明理由.
請完成填空并補充完整.
解:因為∠1+∠2=180°(已知)
又因為∠2+∠ =180°(鄰補角的意義)
所以∠1=∠ ( )
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)平面上有四個點A,B,C,D,按照以下要求作圖:
①作直線AD;
②作射線CB交直線AD于點E;
③連接AC,BD交于點F;
(2)圖中共有 條線段;
(3)若圖中F是AC的一個三等分點,AF<FC,已知線段AC上所有線段之和為18,求AF長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將紙片△ABC沿AD折疊,使點C剛好落在AB邊上的E處,展開如圖1.
[操作觀察]
(1)如圖2,作DF⊥AC,垂足為F,且DF=3,AC=6,S△ABC=21,則AB= ;
[理解應(yīng)用]
(2)①如圖3,設(shè)G為AC上一點(與A、C)不重合,P是AD上一個動點,連接PG、PC.試說明:PG+PC與EG大小關(guān)系;
②連接EC,若∠BAC=60°,G為AC中點,且AC=6,求EC長.
[拓展延伸]
(3)請根據(jù)前面的解題經(jīng)驗,解決下面問題:
如圖4,在平面直角坐標(biāo)系中有A(1,4),B(3,﹣2),點P是x軸上的動點,連接AP、BP,當(dāng)AP﹣BP的值最大時,請在圖中標(biāo)出P點的位置,并直接寫出此時P點的坐標(biāo)為 ,AP﹣BP的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將兩塊直角三角尺的頂點疊放在一起.
(1)若∠DCE=35°,求∠ACB的度數(shù);
(2)若∠ACB=140°,求∠DCE的度數(shù);
(3)猜想∠ACB與∠DCE的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,AO=10,AB=8,沿直線CD折疊矩形OABC的一邊BC,使點B落在OA邊上的點E處,分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系,拋物線y=ax2+bx+c經(jīng)過O,D,C三點.
(1)求AD的長及拋物線的解析式;
(2)一動點P從點E出發(fā),沿EC以每秒2個單位長的速度向點C運動,同時動點Q從點C出發(fā),沿CO以每秒1個單位長的速度向點O運動,當(dāng)點P運動到點C時,兩點同時停止運動,設(shè)運動時間為t秒,當(dāng)t為何值時,以P,Q,C為頂點的三角形與ADE相似?
(3)點N在拋物線對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使以M,N,C,E為頂點的四邊形是平行四邊形?若存在,請直接寫出點M與點N的坐標(biāo)(不寫求解過程);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都為1,在方格紙中將三角形ABC經(jīng)過一次平移后得到三角形A'B' C′,圖中標(biāo)出了點C的對應(yīng)點C'.
(1)請畫出平移后的三角形A'B'C′;
(2)連接AA′,CC′,則這兩條線段之間的關(guān)系是 ;
(3)三角形A'B'C'的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了紀(jì)念中國共產(chǎn)主義青年團成立90周年,某校初三(1)、(2)班團支部組織了一次聯(lián)歡會,小樂為活動設(shè)計了一個游戲:把兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤各等分成三個扇形,分別標(biāo)上1,2,3和4,5,6,每班級各派一名選手參加,每人同時轉(zhuǎn)動兩個轉(zhuǎn)盤各一次(指針落在等分線上重轉(zhuǎn)),轉(zhuǎn)盤停止后,指針指向的數(shù)字之和為偶數(shù)時(1)班獲勝,數(shù)字之和為奇數(shù)時(2)班獲勝,小樂設(shè)計的游戲規(guī)則公平嗎?請用樹狀圖或列表分析說明,若認為不公平,請修改規(guī)則使游戲變得公平.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣ x+3與坐標(biāo)軸交于A,B兩點,設(shè)P,Q分別為AB邊,OB邊上的動點,它們同時分別從點A,點O以每秒1個單位速度向終點B勻速移動,當(dāng)一個點到達終點時另一個點也停止移動,設(shè)移動時間為t秒.
(1)請寫出點A,點B的坐標(biāo);
(2)試求△OPQ的面積S與移動時間t之間的函數(shù)關(guān)系式,當(dāng)t為何值時,S有最大值?并求出S的最大值;
(3)試證明無論t為何值,△OPQ都不會是等邊三角形;
(4)將△OPQ沿直線PQ折疊,得到△O′PQ,問:△OPQ和O′PQ能否拼成一個三角形?若能,求出點O′的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com