【題目】已知矩形ABCD中,AB2BCm,點(diǎn)E是邊BC上一點(diǎn),BE1,連接AE

1)沿AE翻折ABE使點(diǎn)B落在點(diǎn)F處,

①連接CF,若CFAE,求m的值;

②連接DF,若DF,求m的取值范圍.

2ABE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得AB1E1,點(diǎn)E1落在邊AD上時(shí)旋轉(zhuǎn)停止.若點(diǎn)B1落在矩形對(duì)角線(xiàn)AC上,且點(diǎn)B1AD的距離小于時(shí),求m的取值范圍.

【答案】(1)①2;②1≤m;(2)<m≤4.

【解析】

1)①畫(huà)出圖形,由CFAE可得內(nèi)錯(cuò)角和同位角相等,由翻折有對(duì)應(yīng)角相等,等量代換后出現(xiàn)等腰三角形,即求出m的值.
②由于ABE的形狀大小是固定的,其翻折圖形也固定,故可求點(diǎn)FAD的距離FGAG的長(zhǎng)度,根據(jù)DFG是直角三角形即可利用勾股定理用含m的式子表示DF2的長(zhǎng)度,此時(shí)可把DF2看作是m的二次函數(shù),根據(jù)二次函數(shù)圖象的性質(zhì)和DF2的范圍,確定自變量m的范圍.
2)根據(jù)點(diǎn)B1AC上,利用內(nèi)錯(cuò)角相等即三角函數(shù)相等可用含m的式子表示B1AC的距離B1M,即求出m的最小值.又畫(huà)圖可知,當(dāng)點(diǎn)E1落在AD上時(shí),m最大,畫(huà)出圖形,利用∠ACB=B1AE1即三角函數(shù)相等即求出m的值.

解:(1)①如圖1,∵CFAE

∴∠FCE=∠AEB,∠CFE=∠AEF

∵△ABE翻折得到AFE

EFBE1,∠AEF=∠AEB

∴∠FCE=∠CFE

CEEF1

mBCBE+CE2

m的值是2

②如圖2,過(guò)點(diǎn)FGHAD于點(diǎn)G,交BC于點(diǎn)H

GHBC

∴∠AGF=∠FHE90°

∵四邊形ABCD是矩形

∴∠BAD=∠B90°

∴四邊形ABHG是矩形

GHAB2AGBH

∵△ABE翻折得到AFE

EFBE1,AFAB2,∠AFE=∠B90°

∴∠AFG+EFH=∠AFG+FAG90°

∴∠EFH=∠FAG

∴△EFH∽△FAG

設(shè)EHx,則AGBHx+1

FG2EH2x

FHGHFG22x

解得:x

AG,FG

ADBCm

DG|ADAG||m|

DF2DG2+FG2=(m2+2,

即可把DF2看作關(guān)于m的二次函數(shù),拋物線(xiàn)開(kāi)口向上,最小值為.

∵(m2+2 解得:m1,m21

∴根據(jù)二次函數(shù)圖象可知,1≤m

2)如圖3,過(guò)點(diǎn)B1MNAD于點(diǎn)M,交BC于點(diǎn)N

MNAB,MNAB2

AC

sinACB

ADBC,點(diǎn)B1AC

∴∠MAB1=∠ACB

sinMAB1

∵點(diǎn)B1AD的距離小于

MB1

解得:

m0

m

如圖4,當(dāng)E1落在邊AD上,且B1AC上時(shí),m最大,

此時(shí),∠ACB=∠B1AE1=∠BAE

tanACBtanBAE

mBC2AB4

m的取值范圍是m≤4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,繞某點(diǎn)按一定方向旋轉(zhuǎn)一定角度后得到,點(diǎn)ABC分別對(duì)應(yīng)點(diǎn)A1B1,C1 .

(1)根據(jù)點(diǎn)的位置確定旋轉(zhuǎn)中心是點(diǎn)______________

(2)請(qǐng)?jiān)趫D中畫(huà)出;

(3)請(qǐng)具體描述一下這個(gè)旋轉(zhuǎn):________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】要建一個(gè)如圖所示的面積為300m2的長(zhǎng)方形圍欄,圍欄總長(zhǎng)50m,一邊靠墻(墻長(zhǎng)25m).

(1)求圍欄的長(zhǎng)和寬;

(2)能否圍成面積為400m2的長(zhǎng)方形圍欄?如果能,求出該長(zhǎng)方形的長(zhǎng)和寬,如果不能請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn).

1)該拋物線(xiàn)的對(duì)稱(chēng)軸是________.

2)該拋物線(xiàn)與軸交于點(diǎn),點(diǎn)軸交于點(diǎn),點(diǎn)的坐標(biāo)為,若此拋物線(xiàn)的對(duì)稱(chēng)軸上的點(diǎn)滿(mǎn)足,則點(diǎn)的縱坐標(biāo)的取值范圍是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】高爾基說(shuō):書(shū),是人類(lèi)進(jìn)步的階梯.閱讀可以豐富知識(shí)、拓展視野、充實(shí)生活等諸多益處.為了解學(xué)生的課外閱讀情況,某校隨機(jī)抽查了部分學(xué)生閱讀課外書(shū)冊(cè)數(shù)的情況,并繪制出如下統(tǒng)計(jì)圖,其中條形統(tǒng)計(jì)圖因?yàn)槠茡p丟失了閱讀5冊(cè)書(shū)數(shù)的數(shù)據(jù).

1)求條形圖中丟失的數(shù)據(jù),并寫(xiě)出閱讀書(shū)冊(cè)數(shù)的眾數(shù)和中位數(shù);

2)根據(jù)隨機(jī)抽查的這個(gè)結(jié)果,請(qǐng)估計(jì)該校1200名學(xué)生中課外閱讀5冊(cè)書(shū)的學(xué)生人數(shù);

3)若學(xué)校又補(bǔ)查了部分同學(xué)的課外閱讀情況,得知這部分同學(xué)中課外閱讀最少的是6冊(cè),將補(bǔ)查的情況與之前的數(shù)據(jù)合并后發(fā)現(xiàn)中位數(shù)并沒(méi)有改變,試求最多補(bǔ)查了多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,D、E分別是AB,AC的中點(diǎn),作∠B的角平分線(xiàn)

(1)如圖1,若∠B的平分線(xiàn)恰好經(jīng)過(guò)點(diǎn)E,猜想△ABC是怎樣的特殊三角形,并說(shuō)明理由;

(2)如圖2,若∠B的平分線(xiàn)交線(xiàn)段DE于點(diǎn)F,已知AB=8,BC=10,求EF的長(zhǎng)度;

(3)若∠B的平分線(xiàn)交直線(xiàn)DE于點(diǎn)F,直接寫(xiě)出AB、BC、EF三者之間的數(shù)量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊的中點(diǎn),BEAC,垂足為點(diǎn)F,連接DF,分析下列四個(gè)結(jié)論:①△AEF∽△CAB;②CF=2AF;③DFDC;④tan∠CAD.其中正確的結(jié)論有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,EBC上的一點(diǎn),連結(jié)AE,作BF⊥AE,垂足為H,CDF,CG∥AE,BFG.

求證:(1CG=BH;(2FC2=BF·GF;(3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰ABC中,ABAC5cmBC8cm.動(dòng)點(diǎn)D從點(diǎn)C出發(fā),沿線(xiàn)段CB2cm/s的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)O從點(diǎn)B出發(fā),沿線(xiàn)段BA1cm/s的速度向點(diǎn)A運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)動(dòng)點(diǎn)也隨時(shí)停止.設(shè)運(yùn)動(dòng)時(shí)間為ts),以點(diǎn)O為圓心,OB長(zhǎng)為半徑的⊙OBA交于另一點(diǎn)E,連接ED.當(dāng)直線(xiàn)DE與⊙O相切時(shí),t的取值是( 。

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案