【題目】為了參加學(xué)校舉辦的“新城杯”足球聯(lián)賽,新城中學(xué)七(1)班學(xué)生去商場購買了A品牌足球1個、B品牌足球2個,共花費400元,七(2)班學(xué)生購買了品牌A足球3個、B品牌足球1個,共花費450元.
(1)求購買一個A種品牌、一個B種品牌的足球各需多少元?
(2)為了進(jìn)一步發(fā)展“校園足球”,學(xué)校準(zhǔn)備再次購進(jìn)A、B兩種品牌的足球,學(xué)校提供專項經(jīng)費850元全部用于購買這兩種品牌的足球,學(xué)校這次最多能購買多少個足球?
【答案】(1)購買一個A種品牌足球需要100元,購買一個B種品牌足球需要150元;(2)學(xué)校這次最多能購買8個足球.
【解析】
(1)設(shè)購買一個A種品牌足球需要x元,購買一個B種品牌足球需要y元,根據(jù)“購買A品牌足球1個、B品牌足球2個,共花費400元;購買A品牌足球3個、B品牌足球1個,共花費450元”,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;
(2)設(shè)可以購買m個A種品牌足球,n個B種品牌足球,根據(jù)總價=單價×數(shù)量,即可得出關(guān)于m,n的二元一次方程,結(jié)合m,n均為非負(fù)整數(shù)即可求出m,n的值,將m,n值相加取其最大值即可得出結(jié)論.
解:(1)設(shè)購買一個A種品牌足球需要x元,購買一個B種品牌足球需要y元,
依題意,得:,
解得:.
答:購買一個A種品牌足球需要100元,購買一個B種品牌足球需要150元.
(2)設(shè)可以購買m個A種品牌足球,n個B種品牌足球,
依題意,得:100m+150n=850,
∴n=.
∵m,n均為非負(fù)整數(shù),
∴或或,
∴m+n=6或m+n=7或m+n=8.
答:學(xué)校這次最多能購買8個足球.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某玩具廠生產(chǎn)一種玩具,本著控制固定成本,降價促銷的原則,使生產(chǎn)的玩具能夠全部售出.據(jù)市場調(diào)查,若按每個玩具280元銷售時,每月可銷售300個.若銷售單價每降低1元,每月可多售出2個.據(jù)統(tǒng)計,每個玩具的固定成本Q(元)與月產(chǎn)銷量y(個)滿足如下關(guān)系:
月產(chǎn)銷量y(個) | … | 160 | 200 | 240 | 300 | … |
每個玩具的固定成本Q(元) | … | 60 | 48 | 40 | 32 | … |
(1)寫出月產(chǎn)銷量y(個)與銷售單價x (元)之間的函數(shù)關(guān)系式;
(2)求每個玩具的固定成本Q(元)與月產(chǎn)銷量y(個)之間的函數(shù)關(guān)系式;
(3)若每個玩具的固定成本為30元,則它占銷售單價的幾分之幾?
(4)若該廠這種玩具的月產(chǎn)銷量不超過400個,則每個玩具的固定成本至少為多少元?銷售單價最低為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O是坐標(biāo)原點,ABCD的頂點A的坐標(biāo)為(﹣2,0),點D的坐標(biāo)為(0,2 ),點B在x軸的正半軸上,點E為線段AD的中點
(1)如圖1,求∠DAO的大小及線段DE的長;
(2)過點E的直線l與x軸交于點F,與射線DC交于點G.連接OE,△OEF′是△OEF關(guān)于直線OE對稱的圖形,記直線EF′與射線DC的交點為H,△EHC的面積為3 .
①如圖2,當(dāng)點G在點H的左側(cè)時,求GH,DG的長;
②當(dāng)點G在點H的右側(cè)時,求點F的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人共同計算一道整式乘法題:(2x+a)(3x+b).甲由于把第一個多項式中的“+a”看成了“﹣a”,得到的結(jié)果為6x2+11x﹣10;乙由于漏抄了第二個多項式中x的系數(shù),得到的結(jié)果為2x2﹣9x+10.
(1)求a、b的值.
(2)計算這道乘法題的正確結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,∠C=50°,AH,BD分別是△ABC高和角平分線,點P為邊BC上一個點,當(dāng)△BDP為直角三角形時,則∠CDP=_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在長方形ABCD中, AB=CD=4cm,BC=3cm,動點P從點A出發(fā),先以1cm/s的速度沿A→B,然后以2cm/s的速度沿B→C運動,到C點停止運動,設(shè)點P運動的時間為t秒,是否存在這樣的t,使得△BPD的面積S>3cm2?如果能,請求出t的取值范圍;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校有一塊長為(5a+b)米,寬為(3a+b)米的長方形空地,中間是邊長(a﹣b)米的正方形草坪,其余為活動場地,學(xué)校計劃將活動場地(陰影部分)進(jìn)行硬化.
(1)用含a,b的代數(shù)式表示需要硬化的面積并化簡;
(2)當(dāng)a=5,b=2時,求需要硬化的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,同學(xué)們探究下面命題的正確性,頂角為36°的等腰三角形我們稱之為黃金三角形,“黃金三角形“具有一種特性,即經(jīng)過它某一頂點的一條直線可以把它分成兩個小等腰三角形,為此,請你,解答問題:
(1)已知如圖1:黃金三角形△ABC中,∠A=36°,直線BD平分∠ABC交AC于點D,求證:△ABD和△DBC都是等腰三角形;
(2)如圖,在△ABC中,AB=AC,∠A=36°,請你設(shè)計三種不同的方法,將△ABC分割成三個等腰三角形,不要求寫出畫法,不要求證明,但是要標(biāo)出所分得的每個三角形的各內(nèi)角的度數(shù).
(3)已知一個三角形可以被分成兩個等腰三角形,若原三角形的一個內(nèi)角為36°,求原三角形的最大內(nèi)角的所有可能值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究:
如圖,拋物線y= x2﹣ x﹣4與x軸交與A,B兩點(點B在點A的右側(cè)),與y軸交于點C,連接BC,以BC為一邊,點O為對稱中心作菱形BDEC,點P是x軸上的一個動點,設(shè)點P的坐標(biāo)為(m,0),過點P作x軸的垂線l交拋物線于點Q.
(1)求點A,B,C的坐標(biāo).
(2)當(dāng)點P在線段OB上運動時,直線l分別交BD,BC于點M,N.試探究m為何值時,四邊形CQMD是平行四邊形,此時,請判斷四邊形CQBM的形狀,并說明理由.
(3)當(dāng)點P在線段EB上運動時,是否存在點Q,使△BDQ為直角三角形?若存在,請直接寫出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com