精英家教網 > 初中數學 > 題目詳情

【題目】某水果批發(fā)商銷售每箱進價為40元的蘋果,物價部門規(guī)定每箱售價不得高于55元,市場調查發(fā)現,若每箱以50元的價格調查,平均每天銷售90箱,價格每提高1元,平均每天少銷售3箱.
(1)求平均每天銷售量y(箱)與銷售價x(元/箱)之間的函數關系式.
(2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售價x(元/箱)之間的函數關系式.
(3)當每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?

【答案】
(1)解:由題意得:

y=90﹣3(x﹣50)

化簡得:y=﹣3x+240


(2)解:由題意得:

w=(x﹣40)y

(x﹣40)(﹣3x+240)

=﹣3x2+360x﹣9600


(3)解:w=﹣3x2+360x﹣9600

∵a=﹣3<0,

∴拋物線開口向下.

=60時,w有最大值.

又x<60,w隨x的增大而增大.

∴當x=55元時,w的最大值為1125元.

∴當每箱蘋果的銷售價為55元時,可以獲得1125元的最大利潤.


【解析】(1)抓住已知條件,價格每提高1元,平均每天少銷售3箱.可列出y與x之間的函數關系式。
(2)根據平均每天的銷售利潤w=(每一箱的售價-每一箱的進價)銷售量y。即可列出函數關系式。
(3)根據題意求出頂點坐標,結合已知規(guī)定每箱售價不得高于55元,即可得出結論。
【考點精析】關于本題考查的二次函數的最值,需要了解如果自變量的取值范圍是全體實數,那么函數在頂點處取得最大值(或最小值),即當x=-b/2a時,y最值=(4ac-b2)/4a才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,長方形BCDE的各邊分別平行于x軸或y軸,物體甲和物體乙分別由點A2,0)同時出發(fā),沿長方形BCDE的邊作環(huán)繞運動.物體甲按逆時針方向以1個單位/秒勻速運動,物體乙按順時針方向以2個單位/秒勻速運動,則兩個物體運動后的第2017次相遇地點的坐標是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知AC平分∠PAQ,點B、B分別在邊AP、AQ上,如果添加一個條件,即可推出AB=AB,下列條件中無法推出AB=AB的是(

A. BB′⊥AC B. BC=BC C. ACB=ACB D. ABC=∠ABC

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】轉化是數學中的一種重要思想,即把陌生的問題轉化成熟悉的問題,把復雜的問題轉化成簡單的問題,把抽象的問題轉化為具體的問題.

(1)請你根據已經學過的知識求出下面星形圖(1)中∠A+∠B+∠C+∠D+∠E的度數;

(2)若對圖(1)中星形截去一個角,如圖(2),請你求出∠A+∠B+∠C+∠D+∠E+∠F的度數;

(3)若再對圖(2)中的角進一步截去,你能由題(2)中所得的方法或規(guī)律,猜想圖3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度數嗎?只要寫出結論,不需要寫出解題過程)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,點EABC外部,DBC邊上,DEACF,若∠1=2,C=E, AE=AC,

(1)求證: ABC≌△ADE;

(2) 求證:2=3;

(3)當∠2=90°時,判斷ABD的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知二次函數 的圖像經過點A(-1,-1)和點B(3,-9).

(1)求該二次函數的表達式;
(2)寫出該拋物線的對稱軸及頂點坐標;
(3)點Pmm)與點Q均在該函數圖像上(其中m>0),且這兩點關于拋物線的對稱軸對稱,求m的值及點Q x軸的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)經過點(-1,0),對稱軸為:直線x=1,則下列結論中正確的是:( )

A.a>0
B.當x>1時,y隨x的增大而增大
C. <0
D.x=3是一元二次方程ax2+bx+c=0(a≠0)的一個根

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在《朗讀者》節(jié)目的影響下,某中學開展了好書伴我成長讀書活動.為了解5月份八年級300名學生的讀書情況,隨機調查了八年級50名學生讀書的冊數,統(tǒng)計數據如下表所示:

冊數

0

1

2

3

4

人數

3

13

16

17

1

關于這組數據,下列說法正確的是 ( )

A. 中位數是2 B. 眾數是17 C. 平均數是3 D. 方差是2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在下列解題過程的空白處填上適當的內容(推理的理由或數學表達式)

如圖,∠1∠21800,∠3∠4

求證:EFGH

證明:∵∠1∠21800(已知),

∠AEG ∠1(對頂角相等)

∴AB∥CD ),

∴∠AEG ),

∵∠3∠4(已知),

∴∠3∠AEG∠4 ,(等式性質)

,

∴EF∥GH

查看答案和解析>>

同步練習冊答案