【題目】四邊形一條對(duì)角線所在直線上的點(diǎn),如果到這條對(duì)角線的兩端點(diǎn)的距離不相等,但到另一對(duì)角線的兩個(gè)端點(diǎn)的距離相等,則稱這點(diǎn)為這個(gè)四邊形的準(zhǔn)等距點(diǎn).如圖,點(diǎn)P為四邊形ABCD對(duì)角線AC所在直線上的一點(diǎn),PD=PB,PA≠PC,則點(diǎn)P為四邊形ABCD的準(zhǔn)等距點(diǎn).
(1)如圖2,畫出菱形ABCD的一個(gè)準(zhǔn)等距點(diǎn).
(2)如圖3,作出四邊形ABCD的一個(gè)準(zhǔn)等距點(diǎn)(尺規(guī)作圖,保留作圖痕跡,不要求寫作法).
(3)如圖4,在四邊形ABCD中,P是AC上的點(diǎn),PA≠PC,延長BP交CD于點(diǎn)E,延長DP交BC于點(diǎn)F,且∠CDF=∠CBE,CE=CF.求證:點(diǎn)P是四邊形ABCD的準(zhǔn)等距點(diǎn).
【答案】
(1)解:如圖2,點(diǎn)P即為所畫點(diǎn).
(2)解:如圖3,點(diǎn)P即為所作點(diǎn)
(3)解:證明:連接DB,
在△DCF與△BCE中, ,
∴△DCF≌△BCE(AAS),
∴CD=CB,
∴∠CDB=∠CBD.
∴∠PDB=∠PBD,
∴PD=PB,
∵PA≠PC
∴點(diǎn)P是四邊形ABCD的準(zhǔn)等距點(diǎn)
【解析】(1)根據(jù)菱形的性質(zhì),在菱形對(duì)角線上找出除中心外的任意一點(diǎn)即可;(2)作對(duì)角線BD的垂直平分線于與另一對(duì)角線AC相交于點(diǎn)P,根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得點(diǎn)P即為所求的準(zhǔn)等距點(diǎn);(3)連接BD,先利用“角角邊”證明△DCF和△BCE全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得CD=CB,再根據(jù)等邊對(duì)等角的性質(zhì)可得∠CDB=∠CBD,從而得到∠PDB=∠PBD,然后根據(jù)等角對(duì)等邊的性質(zhì)可得PD=PB,根據(jù)準(zhǔn)等距點(diǎn)的定義即可得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過A(﹣3.0)、C(0,4),點(diǎn)B在拋物線上,CB∥x軸,且AB平分∠CAO.
(1)求拋物線的解析式a,b,c;
(2)線段AB上有一動(dòng)點(diǎn)P,過點(diǎn)P作y軸的平行線,交拋物線于點(diǎn)Q,求線段PQ的最大值;
(3)拋物線的對(duì)稱軸上是否存在點(diǎn)M,使△ABM是以AB為直角邊的直角三角形?如果存在求出點(diǎn)M坐標(biāo);如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 中, ,垂足為 ,點(diǎn) 在 上, ,垂足為 .
(1) 與 平行嗎?為什么?
(2)如果 ,且 ,求 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班有48位同學(xué),在一次數(shù)學(xué)檢測中,分?jǐn)?shù)只取整數(shù),統(tǒng)計(jì)其成績,繪制出頻數(shù)分布直方圖(橫半軸表示分?jǐn)?shù),把50.5分到100.5分之間的分?jǐn)?shù)分成5組,組距是10分,縱半軸表示頻數(shù))如圖所示,從左到右的小矩形的高度比是1:3:6:4:2,則由圖可知,其中分?jǐn)?shù)在70.5~80.5之間的人數(shù)是( 。
A.9
B.18
C.12
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為10cm,OP=8cm,則點(diǎn)P和⊙O的位置關(guān)系是( )
A.點(diǎn)P在圓內(nèi)B.點(diǎn)P在圓上C.點(diǎn)P在圓外D.無法判斷
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx﹣k,y隨x的增大而減小,則函數(shù)圖象不過( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com