【題目】閱讀下列文字:
我們知道,對于一個圖形,通過兩種不同的方法計算它的面積,可以得到一個數(shù)學(xué)等式,例如由圖1可以得到(a+2b)(a+b)=a2+3ab+2b2 .
請解答下列問題:
(1)寫出圖2中所表示的數(shù)學(xué)等式;
(2)利用(1)中所得到的結(jié)論,解決下面的問題:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
(3)圖3中給出了若干個邊長為a和邊長為b的小正方形紙片及若干個邊長分別為a、b的長方形紙片, ①請按要求利用所給的紙片拼出一個幾何圖形,并畫在圖3所給的方框中,要求所拼出的幾何圖形的面積為2a2+5ab+2b2 ,
②再利用另一種計算面積的方法,可將多項式2a2+5ab+2b2分解因式.
【答案】
(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc
(2)解:a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,
=112﹣2×38,
=45;
(3)①如圖所示,
②如上圖所示的矩形面積=(2a+b)(a+2b),
它是由2個邊長為a的正方形、5個邊長分別為a、b的長方形、2個邊長為b的小正方形組成,所以面積為2a2+5ab+2b2,
則2a2+5ab+2b2=(2a+b)(a+2b),
故答案為:2a2+5ab+2b2=(2a+b)(a+2b).
【解析】(1)直接根據(jù)圖形寫出等式;(2)將所求式子與(1)的結(jié)論對比,得出變形的式子,代入求值即可;(3)①畫出圖形,答案不唯一,②根據(jù)原圖形面積=組合后長方形的面積得出等式.
【考點精析】本題主要考查了因式分解的應(yīng)用的相關(guān)知識點,需要掌握因式分解是整式乘法的逆向變形,可以應(yīng)用與數(shù)字計算、求值、整除性問題、判斷三角形的形狀、解方程才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,矩形ABCD中,AB=4cm,AD=2AB,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O.
(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;
(2)如圖2,動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周,即點P自A→F→B→A停止,點Q自C→D→E→C停止.在運動過程中,
①已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒.當(dāng)A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值;
②若點P、Q的速度分別為v1、v2(cm/s),點P、Q的運動路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點為頂點的四邊形是平行四邊形,試探究a與b滿足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果3x=4+2x,那么x=_______,理由:根據(jù)等式的性質(zhì)______,在等式兩邊_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖是某市區(qū)四個景點或單位(A為商店,C為工人文化宮,F(xiàn)為牌坊,G為市汽車站)的大致平面圖.可將方格的邊長看作是一個單位長度.
(1)請你建立適當(dāng)?shù)闹苯亲鴺?biāo)系,分別寫出這四個地點的坐標(biāo).
(2)在商店A處有游客甲和游客乙,甲按線路A→D→E→F步行到達(dá)牌坊;乙按A→B→C步行到達(dá)工人文化宮,若一個單位長度代表100米,你能比較一下兩人哪個走的路程較多嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一個菱形繞著它的對角線的交點旋轉(zhuǎn)90°,旋轉(zhuǎn)前后的兩個菱形構(gòu)成一個“星形”(陰影部分),若菱形的一個內(nèi)角為60°,邊長為2,則該“星形”的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c圖象上部分點的坐標(biāo)滿足下表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | … |
y | … | ﹣3 | ﹣2 | ﹣3 | ﹣6 | ﹣11 | … |
則該函數(shù)圖象的頂點坐標(biāo)為( )
A.(﹣3,﹣3)
B.(﹣2,﹣2)
C.(﹣1,﹣3)
D.(0,﹣6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解并填空:
(1)為了求代數(shù)式 的值,我們必須知道x的值.若x=1,則這個代數(shù)式的值為;若x=2,則這個代數(shù)式的值為 , ……可見,這個代數(shù)式的值因x的取值不同而變化.盡管如此,我們還是有辦法來考慮這個代數(shù)式的值的范圍.
(2)把一個多項式進行部分因式分解可以解決求代數(shù)式的最大(或最。┲祮栴}.例如: =( ) = ,因為 是非負(fù)數(shù),所以,這個代數(shù)式 的最小值是 , 這時相應(yīng)的x的平方是.
嘗試探究并解答:
(3)求代數(shù)式 的最小值,并寫出相應(yīng)x的值.
(4)求代數(shù)式 的最大值,并寫出相應(yīng)x的值.
(5)已知 ,且x的值在數(shù)1~4(包含1和4)之間變化,試探求此時y的不同變化范圍(直接寫出當(dāng)x在哪個范圍變化時,對應(yīng)y的變化范圍).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com