【題目】數(shù)形結(jié)合是一種重要的數(shù)學(xué)思想,我們不但可以用數(shù)來(lái)解決圖形問(wèn)題,同樣也可以用借助圖形來(lái)解決數(shù)量問(wèn)題,往往能出奇制勝,數(shù)軸和勾股定理是數(shù)形結(jié)合的典范.數(shù)軸上的兩點(diǎn)A和B所表示的數(shù)分別是和,則A,B兩點(diǎn)之間的距離;坐標(biāo)平面內(nèi)兩點(diǎn),,它們之間的距離.如點(diǎn),,則.表示點(diǎn)與點(diǎn)之間的距離,表示點(diǎn)與點(diǎn)和的距離之和.
(1)已知點(diǎn),,________;
(2)表示點(diǎn)和點(diǎn)之間的距離;
(3)請(qǐng)借助圖形,求的最小值.
【答案】(1);(2),,;(3)最小值是.
【解析】
(1)根據(jù)兩點(diǎn)之間的距離公式即可得到答案;
(2)根據(jù)表示點(diǎn)與點(diǎn)之間的距離,可以得到A、B兩點(diǎn)的坐標(biāo);
(3)根據(jù)兩點(diǎn)之間的距離公式,再結(jié)合圖形,通過(guò)化簡(jiǎn)可以得到答案;
解:(1)根據(jù)兩點(diǎn)之間的距離公式得:,
故答案為:.
(2)根據(jù)表示點(diǎn)與點(diǎn)之間的距離,
∴表示點(diǎn)和點(diǎn)之間的距離,
∴
故答案為:b,-6,1.
(3)解:
如圖1,表示的長(zhǎng),
根據(jù)兩點(diǎn)之間線段最短知
如圖2,
∴的最小值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與探究問(wèn)題背景數(shù)學(xué)活動(dòng)課上,老師將一副三角尺按圖(1)所示位置擺放,分別作出∠AOC,∠BOD的平分線OM、ON,然后提出如下問(wèn)題:求出∠MON的度數(shù).
特例探究“興趣小組”的同學(xué)決定從特例入手探究老師提出的問(wèn)題,他們將三角尺分別按圖2、圖3所示的方式擺放,OM和ON仍然是∠AOC和∠BOD的角平分線.其中,按圖2方式擺放時(shí),可以看成是ON、OD、OB在同一直線上.按圖3方式擺放時(shí),∠AOC和∠BOD相等.
(1)請(qǐng)你幫助“興趣小組”進(jìn)行計(jì)算:圖2中∠MON的度數(shù)為 °.圖3中∠MON的度數(shù)為 °.
發(fā)現(xiàn)感悟
解決完圖2,圖3所示問(wèn)題后,“興趣小組”又對(duì)圖1所示問(wèn)題進(jìn)行了討論:
小明:由于圖1中∠AOC和∠BOD的和為90°,所以我們?nèi)菀椎玫健?/span>MOC和∠NOD的和,這樣就能求出∠MON的度數(shù).
小華:設(shè)∠BOD為x°,我們就能用含x的式子分別表示出∠NOD和∠MOC度數(shù),這樣也能求出∠MON的度數(shù).
(2)請(qǐng)你根據(jù)他們的談話內(nèi)容,求出圖1中∠MON的度數(shù).
類(lèi)比拓展
受到“興趣小組”的啟發(fā),“智慧小組”將三角尺按圖4所示方式擺放,分別作出∠AOC、∠BOD的平分線OM、ON,他們認(rèn)為也能求出∠MON的度數(shù).
(3)你同意“智慧小組”的看法嗎?若同意,求出∠MON的度數(shù);若不同意,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖形中,第(1)個(gè)圖形由4條線段組成,第(2)個(gè)圖形由10條線段組成,第(3)個(gè)圖形由18條線段組成,…………第(6)個(gè)圖形由( )條線段組成.
A.24B.34C.44D.54
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某車(chē)間有60個(gè)工人,生產(chǎn)甲、乙兩種零件,每人每天平均能生產(chǎn)甲種零件24個(gè)或乙種零件12個(gè).已知每2個(gè)甲種零件和3個(gè)乙種零件配成一套,問(wèn)應(yīng)分配多少人生產(chǎn)甲種零件,多少人生產(chǎn)乙種零件,才能使每天生產(chǎn)的這兩種零件剛好配套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究:如圖①,AB∥CD∥EF,點(diǎn)G、P、H分別在直線AB、CD、EF上,連結(jié)PG、PH,當(dāng)點(diǎn)P在直線GH的左側(cè)時(shí),試說(shuō)明∠AGP+∠EHP=∠GPH.下面給出了這道題的解題過(guò)程,請(qǐng)完成下面的解題過(guò)程,并填空(理由或數(shù)學(xué)式).
解:如圖①,∵AB∥CD( )
∴∠AGP=∠GPD
∵CD∥EF
∴∠DPH=∠EHP( )
∵∠GPD+∠DPH=∠GPH,
∴∠AGP+∠EHP=∠GPH( )
拓展:將圖①的點(diǎn)P移動(dòng)到直線GH的右側(cè),其他條件不變,如圖②.試探究∠AGP、∠EHP、∠GPH之間的關(guān)系,并說(shuō)明理由.
應(yīng)用:如圖③,AB∥CD∥EF,點(diǎn)G、H分別在直線AB、EF上,點(diǎn)Q是直線CD上的一個(gè)動(dòng)點(diǎn),且不在直線GH上,連結(jié)QG、QH.若∠GQH=70°,則∠AGQ+∠EHQ= 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角板ABC和三角板BDE(∠ACB=∠DBE=90°,∠ABC=60°)按不同的位置擺放.
(1)如圖1,若邊BD,BA在同一直線上,則∠EBC= ;
(2)如圖2,若∠EBC=165°,那么∠ABD= ;
(3)如圖3,若∠EBC=120°,求∠ABD的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“長(zhǎng)跑“是中考體育必考項(xiàng)目之一,某中學(xué)為了了解九年級(jí)學(xué)生“長(zhǎng)跑”的情況,隨機(jī)抽取部分九年級(jí)學(xué)生,測(cè)試其長(zhǎng)跑成績(jī)(男子1000米,女子800米),按長(zhǎng)跑時(shí)間長(zhǎng)短依次分為A.B.C.D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制作出如下兩個(gè)不完整的統(tǒng)計(jì)圖.
根據(jù)所給信息,解答下列問(wèn)題:
(1)在扇形統(tǒng)計(jì)用中,C對(duì)應(yīng)的扇形圓心角是____度.
(2)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)該校九年有486名學(xué)生,請(qǐng)估計(jì)“長(zhǎng)跑”測(cè)試成績(jī)達(dá)到A級(jí)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠A=70°,∠B=50°,點(diǎn)M,N分別是BC,AB上的動(dòng)點(diǎn),沿MN所在的直線折疊∠B,使點(diǎn)B的對(duì)應(yīng)點(diǎn)B'落在AC上.若△MB'C為直角三角形,則∠MNB'的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明去買(mǎi)紙杯蛋糕,售貨員阿姨說(shuō):“一個(gè)紙杯蛋糕12元,如果你明天來(lái)多買(mǎi)一個(gè),可以參加打九折活動(dòng),總費(fèi)用比今天便宜24元.”問(wèn):小明今天計(jì)劃買(mǎi)多少個(gè)紙杯蛋糕?
若設(shè)小明今天計(jì)劃買(mǎi)紙杯蛋糕的總價(jià)為x元,請(qǐng)你根據(jù)題意完善表格中的信息,并列方程解答.
單價(jià) | 數(shù)量 | 總價(jià) | |
今天 | 12 | x | |
明天 |
|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com