精英家教網(wǎng)如圖,三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小都相同.正常水位時,大孔水面寬度AB=20m,頂點M距水面6m(即MO=6m),小孔頂點N距水面4.5m(即NC=4.5m).當水位上漲剛好淹沒小孔時,借助圖中的平面直角坐標系,則此時大孔的水面寬度EF為
 
m.
分析:設(shè)出大孔拋物線的解析式的一般形式y(tǒng)=ax2+6,代入點A或B的坐標求得函數(shù)解析式,再由點F的縱坐標求得E、F的橫坐標即可解答.
解答:解:設(shè)大孔拋物線的解析式為y=ax2+6,把點A(-10,0)代入解析式解得,
a=-
3
50
,
因此函數(shù)解析式為y=-
3
50
x2+6;
由NC=4.5m,可知設(shè)點F的縱坐標為4.5,代入解析式y(tǒng)=-
3
50
x2+6,
解得x=±5,
由拋物線對稱性可知點E為(-5,4.5),點F為(5,4.5),
所以EF=10米.
故填10.
點評:此題考查待定系數(shù)法求解析式以及二次函數(shù)的對稱性.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

20、如圖,三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小都相同.正常水位時,大孔水面寬度AB=20米,頂點M距水面6米(即MO=6米),小孔頂點N距水面4.5米(即NC=4.5米).當水位上漲剛好淹沒小孔時,借助圖中的直角坐標系,求此時大孔的水面寬度EF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小都相同.正常水位時,大孔水面寬度AB=20米,頂點M距水面6米(即MO=6米),小孔頂點N距水面4.5米(即NC=4.5米).當水位上漲剛好淹沒小孔時,借助圖中的直角坐標系,則此時大孔的水面寬度EF長為( 。
A、10
3
B、6
3
C、12米
D、10米

查看答案和解析>>

科目:初中數(shù)學 來源:2009-2010學年九年級(下)同步測試期末測試(26~29章)(解析版) 題型:解答題

如圖,三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小都相同.正常水位時,大孔水面寬度AB=20米,頂點M距水面6米(即MO=6米),小孔頂點N距水面4.5米(即NC=4.5米).當水位上漲剛好淹沒小孔時,借助圖中的直角坐標系,求此時大孔的水面寬度EF.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年吉林省中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•吉林)如圖,三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小都相同.正常水位時,大孔水面寬度AB=20米,頂點M距水面6米(即MO=6米),小孔頂點N距水面4.5米(即NC=4.5米).當水位上漲剛好淹沒小孔時,借助圖中的直角坐標系,求此時大孔的水面寬度EF.

查看答案和解析>>

同步練習冊答案