分析 根據(jù)平行四邊形的對(duì)邊相等可得AB=CD,AD=BC,設(shè)點(diǎn)P到AB、BC、CD、DA的距離分別為h1、h2、h3、h4,然后利用三角形的面積公式列式整理即可判斷出③正確;根據(jù)三角形的面積公式即可判斷①②④錯(cuò)誤,即可得出結(jié)論.
解答 解:∵四邊形ABCD是平行四邊形,
∴AB=CD,AD=BC,
設(shè)點(diǎn)P到AB、BC、CD、DA的距離分別為h1、h2、h3、h4,
則S1=$\frac{1}{2}$ABh1,S2=$\frac{1}{2}$BCh2,S3=$\frac{1}{2}$CDh3,S4=$\frac{1}{2}$ADh4,
∵$\frac{1}{2}$ABh1+$\frac{1}{2}$CDh3=$\frac{1}{2}$AB•hAB,
$\frac{1}{2}$BCh2+$\frac{1}{2}$ADh4=$\frac{1}{2}$BC•hBC,
又∵S平行四邊形ABCD=AB•hAB=BC•hBC,
∴S2+S4=S1+S3,
故③正確;①②④不正確;
故答案為:③.
點(diǎn)評(píng) 本題考查了平行四邊形的性質(zhì),三角形的面積,以及平行四邊形對(duì)角線上點(diǎn)的判定的應(yīng)用,用平行四邊形的面積表示出相對(duì)的兩個(gè)三角形的面積的和是解題的關(guān)鍵,也是本題的難點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 25° | B. | 35° | C. | 15° | D. | 50° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com