【題目】已知拋物線經(jīng)過點A30),B1,0).

1)求拋物線的解析式;

2)求拋物線的頂點坐標.

【答案】1(2)拋物線的頂點坐標為(1,4.

【解析】試題分析:(1)根據(jù)拋物線y=-x2+bx+c經(jīng)過點A3,0),B-1,0),直接得出拋物線的解析式為;y=-x-3)(x+1),再整理即可,

2)根據(jù)拋物線的解析式為y=-x2+2x+3=-x-12+4,即可得出答案.

試題解析:(1拋物線y=-x2+bx+c經(jīng)過點A3,0),B-1,0).

拋物線的解析式為;y=-x-3)(x+1),

y=-x2+2x+3

2拋物線的解析式為y=-x2+2x+3=-x-12+4,

拋物線的對稱軸為直線x=1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】C是直線l1上一點,在同一平面內(nèi),把一個等腰直角三角板ABC任意擺放,其中直角頂點C與點C重合,過點A作直線l2l1,垂足為點M,過點Bl3l1,垂足為點N

1)當直線l2,l3位于點C的異側時,如圖1,線段BN,AMMN之間的數(shù)量關系 (不必說明理由);

2)當直線l2,l3位于點C的右側時,如圖2,判斷線段BN,AMMN之間的數(shù)量關系,并說明理由;

3)當直線l2,l3位于點C的左側時,如圖3,請你補全圖形,并直接寫出線段BN,AMMN之間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于二次函數(shù) y ax2 2a 1x a 1a 0,有下列結論:①其圖象與 x 軸一定相交;②若 a 0 , 函數(shù)在 x 1 時,y x 的增大而減;③無論 a 取何值,拋物線的頂點始終在同一條直線上;④無論 a 取何值,函數(shù)圖象都經(jīng)過同一個點.其中所有正確的結論是:

A. ①②③ B. ①③④ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AD是△ABC的角平分線,AD的中垂線交AB于點F,交BC的延長線于點E.以下四個結論:(1)∠EAD=∠EDA;(2)DFAC;(3)∠FDE=90°;(4)∠B=∠CAE.恒成立的結論有( )

A. (1)(2)B. (2)(3)(4)C. (1)(2)(4)D. (1)(2)(3)(4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等腰RtABCCDE,AC=BC,CD=CE,連接BEAD,PBD中點,MAB中點、NDE中點,連接PM、PNMN.

1)試判斷PMN的形狀,并證明你的結論;

2)若CD=5,AC=12,求PMN的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,點DE是邊BC上的兩點,且AB=BE,AC=CD.

(1)若∠BAC =90°,求∠DAE的度數(shù);

(2)若∠BAC=120°,直接寫出∠DAE的度數(shù)

(3)設∠BAC=α,∠DAE=β,猜想α與β的之間數(shù)量關系(不需證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,正方形A的一個頂點與正方形B的對稱中心重合,重疊部分面積是正方形A面積的,如圖②,移動正方形A的位置,使正方形B的一個頂點與正方形A的對稱中心重合,則重疊部分面積是正方形B面積的( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋子里裝有黑白兩種顏色的球其40只,這些球除顏色外都相同.小明從袋子中隨機摸一個球,記下顏色后放回,不斷重復,并繪制了如圖所示的統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的信息解決下列問題:

1)摸到黑球的頻率會接近   (精確到0.1);

2)估計袋中黑球的個數(shù)為   只:

3)若小明又將一些相同的黑球放進了這個不透明的袋子里,然后再次進行摸球試驗,當重復大量試驗后,發(fā)現(xiàn)黑球的頻率穩(wěn)定在0.6左右,則小明后來放進了   個黑球.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明騎自行車去郊外春游,他離家的距離y(千米)與所用時間x(小時)之間的關系如圖,根據(jù)圖象回答:

1)小明到達離家最遠的地方需幾小時?此時離家多遠?

2)小明出發(fā)兩個半小時時離家多遠?

3)小明出發(fā)多長時間離家12.5千米?

查看答案和解析>>

同步練習冊答案