【題目】已知關(guān)于的函數(shù)(為常數(shù))
(1)若函數(shù)的圖象與軸恰有一個交點,求的值;
(2)若函數(shù)的圖象是拋物線,且頂點始終在軸上方,求的取值范圍.
【答案】(1)當(dāng)a=0或a=時函數(shù)圖象與軸恰有一個交點;(2)當(dāng)a>或a<0時,拋物線頂點始終在軸上方.
【解析】試題分析:(1)需考慮a為0和不為0的情況,當(dāng)a=0時圖象為一直線;當(dāng)a≠0時圖象是一拋物線,由判別式△=b2-4ac判斷;
(2)根據(jù)拋物線頂點的縱坐標(biāo)公式得到縱坐標(biāo),根據(jù)題意列出不等式組則可解.
試題解析:(1)當(dāng)a=0時,函數(shù)為y=x+1,它的圖象顯然與軸只有一個交點(-1,0),
當(dāng)a≠0時,依題意得方程ax2+x+1=0有兩等實數(shù)根,∴△=1-4a,∴a= ,
∴當(dāng)a=0或a=時函數(shù)圖象與軸恰有一個交點;
(2)根據(jù)題意得 ,則 或,解得a>或a<0.
∴當(dāng)a>或a<0時,拋物線頂點始終在軸上方.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀再解答:我們已經(jīng)知道,根據(jù)幾何圖形的面積關(guān)系可以說明完全平方公式,實際上還有一些等式也可以用這種方式加以說明,例如:
(2a+b)(a+b)=2a2+3ab+b2,就可以用圖①的面積關(guān)系來說明.
(1)根據(jù)圖②寫出一個等式: ;
(2)已知等式:(x+p)(x+q)=x2+(p+q)x+pq,請你畫出一個相應(yīng)的幾何圖形加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線,其中,點A(-2,m)在該拋物線上,過點A作直線l∥x軸,與拋物線交于另一點B,與y軸交于點C.
(1)求m的值.
(2)當(dāng)a=2時,求點B的坐標(biāo).
(3)如圖2,以OB為對角線作菱形OPBQ,頂點P在直線l上,頂點Q在x軸上.
①若PB=2AP,求a的值.
②菱形OPBQ的面積的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于的二次函數(shù)y=x2+2kx+k-1,下列說法正確的是( )
A. 對任意實數(shù)k,函數(shù)與x軸都沒有交點
B. 存在實數(shù)n,滿足當(dāng)時,函數(shù)y的值都隨x的增大而減小
C. 不存在實數(shù)n,滿足當(dāng)時,函數(shù)y的值都隨x的增大而減小
D. 對任意實數(shù)k,拋物線都必定經(jīng)過唯一定點
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組數(shù)中,以a、b、c為邊的三角形不是直角三角形的是( )
A.a=,2 ,b=2 ,c=2
B.a= ,b=2,c=
C.a= ,b= ,c=
D.a=5,b=12,c=13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程 kx2+2x﹣1=0有兩個不相等實數(shù)根,則k 的取值范圍是( )
A.k>﹣1
B.k≥﹣1
C.k≠0
D.k>﹣1且k≠0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家里的陽臺地面,水平鋪設(shè)著僅黑白顏色不同的18塊方磚(如圖),他從房間里向陽臺拋小皮球,小皮球最終隨機停留在某塊方磚上.
(1)求小皮球分別停留在黑色方磚與白色方磚上的概率.
(2)(1)中哪個概率較大?要使這兩個概率相等,應(yīng)改變哪塊方磚的顏色?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com