如圖,已知△ABC中,∠ABC=135°,過B作AB的垂線交AC于點P,若,PB=2,求BC的長.
BC=

試題分析:過C作CD⊥AB交AB的延長線于D,求出AP:AC=2:3,推出BP∥CD,得出比例式,代入求出CD,求出∠CBD=45°,求出BD=CD=3,根據(jù)勾股定理求出BC即可.
過C作CD⊥AB交AB的延長線于D

∵PB⊥AB,CD⊥AB,
∴PB∥CD,
∴△APB∽△ACD,



∵PB=2,
∴CD=3,
∵∠ABC=135°,
∴∠DBC=45°,
∵CD⊥BD,
∴BD=CD=3,
由勾股定理得
點評:本題知識點多,綜合性強,主要考查學生的推理能力和計算能力,題目比較典型.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在邊長均為1的小正方形網(wǎng)格紙中,△的頂點、均在格點上,且是直角坐標系的原點,點軸上.

(1)以O為位似中心,將△放大,使得放大后的△與△對應線段的比為2∶1,畫出△ .(所畫△與△在原點兩側(cè)).
(2)求出線段所在直線的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,在矩形ABCD中,AB=6cm,BC=12cm,點P從點A開始以1cm/s的速度沿AB邊向點B運動,點Q從點B以2cm/s的速度沿BC邊向點C運動,如果P、Q同時出發(fā),設運動時間為ts,
(1)當t=2時,求△PBQ的面積;
(2)當t=時,試說明△DPQ是直角三角形;
(3)當運動3s時,P點停止運動,Q點以原速立即向B點返回,在返回的過程中,DP是否能平分∠ADQ?若能,求出點Q運動的時間;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在Rt△ABC中,∠ACB=90°,tan∠BAC=. 點D在邊AC上(不與AC重合),連結(jié)BDFBD中點.

(1)若過點DDEABE,連結(jié)CF、EFCE,如圖1.設,則k =       ;
(2)若將圖1中的△ADE繞點A旋轉(zhuǎn),使得D、E、B三點共線,點F仍為BD中點,如圖2所示.求證:BE-DE=2CF;
(3)若BC=6,點D在邊AC的三等分點處,將線段AD繞點A旋轉(zhuǎn),點F始終為BD中點,求線段CF長度的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△ABC中,、分別是、的中點,給出下列結(jié)論:

;②;③;④
其中正確的結(jié)論有(   )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在相似的兩個三角形中,已知其中一個三角形三邊的長是3,4,5,另一個三角形有一邊長是2,則另一個三角形的周長是          

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,小明家窗外有一堵圍墻AB,由于圍墻的遮擋,清晨太陽光恰好從窗戶的最高點C射進房間的地板F處,中午太陽光恰好能從窗戶的最低點D射進房間的地板E處,小明測得窗子距地面的高度OD=0.8m,窗高CD=1.2m,并測得OE=0.8m,OF=3m,求圍墻AB的高度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在△ABC中,∠BAC=90°,AB<AC,M是BC邊的中點,MN⊥BC交AC于點N.動點P從點B出發(fā)沿射線BA以每秒厘米的速度運動.同時,動點Q從點N出發(fā)沿射線NC運動,且始終保持MQ丄MP.設運動時間為t秒(t>0).
(1)△PBM與△QNM相似嗎?以圖1為例說明理由:
(2)若∠ABC=60°,AB=4厘米.
①求動點Q的運動速度;
②設△APQ的面積為S(平方厘米),求S與t的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖:正方形ABCD中,過點D作DP交AC于點M、交AB于點N,交CB的延長線于點P,若MN=1,PN=3,則DM的長為 _________ 

查看答案和解析>>

同步練習冊答案