解答:解:(1)∵拋物線過點(diǎn)B(2,0),C(6,0),
∴設(shè)拋物線解析式為y=a(x-2)(x-6),
又∵拋物線經(jīng)過點(diǎn)A(0,6),
∴a(0-2)(0-6)=6,
解得a=
,
所以,拋物線解析式為y=
(x-2)(x-6),
即y=
x
2-4x+6;
(2)證明:∵y=
x
2-4x+6=
(x
2-8x+16)-2=
(x-4)
2-2,
∴拋物線對稱軸為直線x=4,頂點(diǎn)坐標(biāo)為D(4,-2),
設(shè)直線AC解析式為y=kx+b,
則
,
解得
,
所以,直線AC的解析式為y=-x+6,
當(dāng)x=4時(shí),y=-4+6=2,
所以,點(diǎn)E(4,2),
所以,DE=2-(-2)=4,
設(shè)直線AB解析式為y=ex+f,
則
,
解得
,
所以,直線AB的解析式為y=-3x+6,
當(dāng)x=4時(shí),y=-3×4+6=-6,
所以,點(diǎn)F(4,-6),
所以,DF=-2-(-6)=4,
所以,DE=DF,
故,點(diǎn)E與點(diǎn)F關(guān)于頂點(diǎn)D對稱;
(3)解:∵A(0,6),B(2,0),C(6,0),D(4,-2),F(xiàn)(4,-6),
∴AF=
=4
,F(xiàn)D=-2-(-6)=4,F(xiàn)C=
=2
,
∵tan∠BAO=
=
=
,tan∠CFD=
=
,
∴∠BAO=∠CFD,
①當(dāng)AP與FD是對應(yīng)邊時(shí),∵△AFP∽△FCD,
∴
=
,
即
=
,
解得AP=8,
所以,OP=8-6=2,
此時(shí),點(diǎn)P的坐標(biāo)為(0,-2);
②當(dāng)AP與FC是對應(yīng)邊時(shí),∵△AFP∽△FDC,
∴
=,
即
=
,
解得AP=20,
所以,OP=20-6=14,
此時(shí),點(diǎn)P的坐標(biāo)為(0,-14),
綜上所述,存在點(diǎn)P(0,-2),(0,-14),使△AFP與△FDC相似.