年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
已知E是正方形ABCD的對角線AC上一點(diǎn),AE=AD,過點(diǎn)E作AC的垂線,交邊CD于點(diǎn)F,那么∠FAD=________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖的四個(gè)轉(zhuǎn)盤中,C,D轉(zhuǎn)盤分成8等分,若讓轉(zhuǎn)盤自由轉(zhuǎn)動(dòng)一次,停止后,指針落在陰影區(qū)域內(nèi)的概率最大的轉(zhuǎn)盤是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線與軸交于點(diǎn)A,與軸交于點(diǎn)B,C兩點(diǎn)(點(diǎn)C在軸正半軸上),△ABC為等腰直角三角形,且面積為4.現(xiàn)將拋物線沿BA方向平移,平移后的拋物線經(jīng)過點(diǎn)C時(shí),與軸的另一交點(diǎn)為E,其頂點(diǎn)為F,對稱軸與軸的交點(diǎn)為H。2·1·c·n·j·y
(1)求,的值;
(2)連結(jié)OF,試判斷△OEF是否為等腰三角形,并說明理由;
(3)現(xiàn)將一足夠大的三角板的直角頂點(diǎn)Q放在射線AF或射線HF上,一直角邊始終過點(diǎn)E,另一直角邊與軸相交于點(diǎn)P,是否存在這樣的點(diǎn)Q,使以點(diǎn)P,Q,E為頂點(diǎn)的三角形與△POE全等?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,有一塊矩形紙片ABCD,AB=8,AD=6,將紙片折疊,使得AD邊落在AB邊上,折痕為AE,再將△AED沿DE向右翻折,AE與BC的交點(diǎn)為F,則△CEF的面積為
A. B. C. 2 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中A點(diǎn)的坐標(biāo)為(8,y) ,AB⊥x軸于點(diǎn)B, sin∠OAB = ,反比例函數(shù)y = 的圖象的一支經(jīng)過AO的中點(diǎn)C,且與AB交于點(diǎn)D.【版權(quán)所有:21教育】
(1)求反比例函數(shù)解析式;
(2)若函數(shù)y = 3x 與y = 的圖象的另一支交于點(diǎn)M,求三角形OMB與四邊形OCDB的面積的比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖7,在平面直角坐標(biāo)系中,點(diǎn)M為x軸正半軸上一點(diǎn),過點(diǎn)M的直線l∥y軸,且直線l分別與反比例函數(shù)(x>0)和(x>0)的圖象交于P、Q兩點(diǎn),若S△POQ=14,則k的值為__________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com