【題目】已知,如圖,直線MN交⊙O于A,B兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于D,過(guò)D作DE⊥MN于E.
(1)求證:DE是⊙O的切線;
(2)若DE=6cm,AE=3cm,求⊙O的半徑.
【答案】解:(1)證明:連接OD,
∵OA=OD,∴∠OAD=∠ODA。
∵∠OAD=∠DAE,∴∠ODA=∠DAE。∴DO∥MN。
∵DE⊥MN,∴∠ODE=∠DEM =90°,即OD⊥DE。
∵D在⊙O上,∴DE是⊙O的切線。
(2)連接CD,
∵∠AED=90°,DE=6,AE=3,∴AD=。
∵AC是⊙O的直徑,∴∠ADC=∠AED =90°。
∵∠CAD=∠DAE,∴△ACD∽△ADE。 ∴,即。
解得:AC=15。
∴⊙O的半徑是7.5cm。
【解析】試題分析:(1)連接OD,根據(jù)平行線的判斷方法與性質(zhì)可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切線.
(2)由直角三角形的特殊性質(zhì),可得AD的長(zhǎng),又有△ACD∽△ADE.根據(jù)相似三角形的性質(zhì)列出比例式,代入數(shù)據(jù)即可求得圓的半徑.
試題解析:(1)證明:連接OD.
∵OA=OD,
∴∠OAD=∠ODA.
∵∠OAD=∠DAE,
∴∠ODA=∠DAE.
∴DO∥MN.
∵DE⊥MN,
∴∠ODE=∠DEM=90°.
即OD⊥DE.
∵D在⊙O上,OD為⊙O的半徑,
∴DE是⊙O的切線.
(2)解:∵∠AED=90°,DE=6,AE=3,
∴.
連接CD.
∵AC是⊙O的直徑,
∴∠ADC=∠AED=90°.
∵∠CAD=∠DAE,
∴△ACD∽△ADE.
∴.
∴.
則AC=15(cm).
∴⊙O的半徑是7.5cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的有( )
①對(duì)頂角相等;②同位角相等;③若兩個(gè)角不相等,則這兩個(gè)角一定不是對(duì)頂角;④若兩個(gè)角不相等,則這兩個(gè)角一定不是同位角.
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長(zhǎng)為半徑畫(huà)弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列說(shuō)法①AD是∠BAC的平分線;②∠ADC=60°③點(diǎn)D在AB的中垂線上;正確的個(gè)數(shù)是 個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校規(guī)定:學(xué)生的數(shù)學(xué)學(xué)期綜合成績(jī)是由平時(shí)、期中和期末三項(xiàng)成績(jī)按3:3:4的比例計(jì)算所得.若某同學(xué)本學(xué)期數(shù)學(xué)的平時(shí)、期中和期末成績(jī)分別是90分,90分和85分,則他本學(xué)期數(shù)學(xué)學(xué)期綜合成績(jī)是 分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,BD平分∠ABC交AC于點(diǎn)D,AE∥BD交CB的延長(zhǎng)線于點(diǎn)E.若∠E=35°,則∠BAC的度數(shù)為( )
A. 40° B. 45° C. 60° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段 AB=30cm,點(diǎn) P 沿線段 AB 自點(diǎn) A 向點(diǎn) B 以 2cm/s 的速度運(yùn)動(dòng),同時(shí)點(diǎn) Q 沿線段 BA 自點(diǎn) B 向點(diǎn) A 以 3cm/s 的速度運(yùn)動(dòng),則秒鐘后,P、Q 兩點(diǎn)相距 10cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com