【題目】如圖,直線都與直線l垂直,垂足分別為M,N,MN=1,正方形ABCD的邊長為,對角線AC在直線l上,且點C位于點M處,將正方形ABCD沿l向右平移,直到點A與點N重合為止,記點C平移的距離為x,正方形ABCD的邊位于之間部分的長度和為y,則y關(guān)于x的函數(shù)圖象大致為( )
A. B. C. D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點F,D,E分別是邊AB,BC,AC上的點,且AD,BE,CF相交于點O,若點O是△ABC的重心,則以下結(jié)論:①線段AD,BE,CF是△ABC的三條角平分線;②△ABD的面積是△ABC面積的一半;③圖中與△ABD面積相等的三角形有5個;④△BOD的面積是△ABD面積的;⑤AO=2OD其中一定正確結(jié)論有( )
A.①③④⑤B.②③④⑤C.③④⑤D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC與△A′B′C′在平面直角坐標系中的位置如圖.
(1)分別寫出下列各點的坐標: A′ ;B′ ;C′ ;
(2)若點P(a,b)是△ABC內(nèi)部一點,則平移后△A′B′C′內(nèi)的對應(yīng)點P′的坐標為 ;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為(2,9),與y軸交于點A(0,5),與x軸交于點E,B.
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)過點A作AC平行于x軸,交拋物線于點C,點P為拋物線上的一點(點P在AC上方),作PD平行于y軸交AB于點D,問當點P在何位置時,四邊形APCD的面積最大?并求出最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).動點P從點A處出發(fā),并按A﹣B﹣C﹣D﹣A﹣B…的規(guī)律在四邊形ABCD的邊上以每秒1個單位長的速度運動,運動時間為t秒.若t=2018秒,則點P所在位置的點的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD中,AB=6,BC=8.點P在矩形ABCD的內(nèi)部,點E在邊BC上,滿足△PBE∽△DBC,若△APD是等腰三角形,則PE的長為數(shù)___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(題文)“校園詩歌大賽”結(jié)束后,張老師和李老師將所有參賽選手的比賽成績(得分均為整數(shù))進行整理,并分別繪制成扇形統(tǒng)計圖和頻數(shù)直方圖部分信息如下:
(1)本次比賽參賽選手共有 人,扇形統(tǒng)計圖中“69.5~79.5”這一組人數(shù)占總參賽人數(shù)的百分比為 ;
(2)賽前規(guī)定,成績由高到低前60%的參賽選手獲獎.某參賽選手的比賽成績?yōu)?/span>78分,試判斷他能否獲獎,并說明理由;
(3)成績前四名是2名男生和2名女生,若從他們中任選2人作為獲獎代表發(fā)言,試求恰好選中1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】利用如圖1的二維碼可以進行身份識別,某校建立了一個身份識別系繞,圖2是某個學生的識別圖案,黑色小正方形表示1,白色小正方形表示0,將第一行數(shù)字從左到右依次記為a,b,c,d,那么可以轉(zhuǎn)換為該生所在班級序號,其序號為a×23+b×22+c×21+d×20,如圖2第一行數(shù)字從左到右依次為0,1,0,1,序號為0×23+1×22+0×21+1×20=5,表示該生為5班學生,那么表示7班學生的識別圖案是( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com