【題目】如圖,小華蒙上眼睛投飛鏢且中目標(biāo)(轉(zhuǎn)盤技等分成4個(gè)扇形,投在邊線上忽略)(直接填寫答案)
(1)擊中紅色區(qū)域的概率是 .
(2)擊中白色區(qū)域的概率是 .
(3)沒有擊中黃色區(qū)域的概率是 .
【答案】(1);(2);(3).
【解析】
(1)首先確定紅色區(qū)域在整個(gè)轉(zhuǎn)盤中占的比例,根據(jù)這個(gè)比例即可求出飛鏢擊中目標(biāo)紅色區(qū)域的概率;
(2)首先確定白色區(qū)域在整個(gè)轉(zhuǎn)盤中占的比例,根據(jù)這個(gè)比例即可求出飛鏢擊中目標(biāo)把色區(qū)域的概率;
(3)首先確定紅、白色區(qū)域在整個(gè)轉(zhuǎn)盤中占的比例,根據(jù)這個(gè)比例即可求出飛鏢沒有擊中黃色區(qū)域的概率.
解:(1)擊中紅色區(qū)域的概率是;
(2)擊中白色區(qū)域的概率是;
(3)沒有擊中黃色區(qū)域的概率是,
故答案為:,,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,AE是∠BAC的平分線,∠EAD=15°,∠B=40°.
(1)求∠C的度數(shù).
(2)若:∠EAD=α,∠B=β,其余條件不變,直接寫出用含α,β的式子表示∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在網(wǎng)格中建立了平面直角坐標(biāo)系,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度,將四邊形ABCD繞坐標(biāo)原點(diǎn)順時(shí)針方向旋轉(zhuǎn)180°后得到四邊形A1B1C1D1 .
(1)寫出點(diǎn)D1的坐標(biāo)________;
(2)將四邊形A1B1C1D1平移,得到四邊形A2B2C2D2,若點(diǎn)D2(4,5),畫出平移后的圖形;
(3)求點(diǎn)D旋轉(zhuǎn)到點(diǎn)D1所經(jīng)過的路線長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了創(chuàng)建書香校園,今年又購(gòu)進(jìn)一批圖書,經(jīng)了解,科普書的單價(jià)比文學(xué)書的單價(jià)多4元,用1200元購(gòu)進(jìn)的科普書與用800元購(gòu)進(jìn)的文學(xué)書本數(shù)相等.
(1)今年購(gòu)進(jìn)的文學(xué)書和科普書的單價(jià)各是多少元?
(2)該校購(gòu)買這兩種書共180本,總費(fèi)用不超過2000元,且購(gòu)買文學(xué)書的數(shù)量不多于42本,應(yīng)選擇哪種購(gòu)買方案可使總費(fèi)用最低?最低費(fèi)用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在周末,小花晚飯后外出散步遇見同學(xué),交談了一會(huì)兒,然后返回,返回途中在報(bào)亭看了一會(huì)報(bào)紙才回到家,如圖是根據(jù)此情景畫出的圖象,請(qǐng)回答下列問題:
(1)小花是在距家 米處遇見同學(xué)的,交談了 分鐘時(shí)間.
(2)報(bào)亭離家 米遠(yuǎn).
(3)小花在整個(gè)過程中走得最快時(shí)的速度是 米/分鐘.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=mx+m和函數(shù)y=-mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知正方形ABCD的邊長(zhǎng)為1,點(diǎn)P是AD邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)A關(guān)于直線BP的對(duì)稱點(diǎn)是點(diǎn)Q,連接PQ、DQ、CQ、BQ,設(shè)AP=x.
(1)BQ+DQ的最小值是_______,此時(shí)x的值是_______;
(2)如圖②,若PQ的延長(zhǎng)線交CD邊于點(diǎn)E,并且∠CQD=90°.
①求證:點(diǎn)E是CD的中點(diǎn); ②求x的值.
(3)若點(diǎn)P是射線AD上的一個(gè)動(dòng)點(diǎn),請(qǐng)直接寫出當(dāng)△CDQ為等腰三角形時(shí)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某辦公樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時(shí),辦公樓在建筑物的墻上留下高3米的影子CE,而當(dāng)光線與地面夾角是45°時(shí),辦公樓頂A在地面上的影子F與墻角C有27米的距離(B,F,C在一條直線上).
(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請(qǐng)你求出A,E之間的距離.
(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com