(2004•無錫)已知:如圖,四邊形ABCD內(nèi)接于⊙O,過點(diǎn)A的切線與CD的延長(zhǎng)線交于E,且∠ADE=∠BDC.
(1)求證:△ABC為等腰三角形;
(2)若AE=6,BC=12,CD=5,求AD的長(zhǎng).

【答案】分析:(1)根據(jù)四邊形ABCD內(nèi)接于⊙O,可得∠ADE=∠ABC,又弧BC所對(duì)的圓周角是∠BAC=∠BDC從而可得∠ABC=∠BAC,故△ABC為等腰三角形;
(2)由弦切角定理可得∠EAD=∠ACE,∠E是公共角,可證△AED∽△CEA,利用對(duì)應(yīng)邊的比相等求線段長(zhǎng)度.
解答:(1)證明:∵四邊形ABCD內(nèi)接于⊙O
∴∠ADE=∠ABC
∵∠BDC=∠ADE
∵∠BAC=∠BDC
∴∠ABC=∠BAC
∴BC=AC
∴△ABC為等腰三角形;

(2)解:∵AE切⊙O于點(diǎn)A
∴∠EAD=∠ACE
∵∠AED=∠CEA
∴△AED∽△CEA
∴AE2=ED•EC=ED•(ED+CD)
∵AE=6,CD=5
∴62=ED(ED+5)
∴ED=4或ED=-9(舍去)
∵△ADE∽△CAE
∴AD:AC=AE:CE
∵AC=BC=12
=
∴AD=8
答:AD的長(zhǎng)為8.
點(diǎn)評(píng):此題考查圓內(nèi)接四邊形的性質(zhì)定理,弦切角的性質(zhì)定理等知識(shí).解答本題關(guān)鍵是運(yùn)用定理證明角相等,從而推出相似,運(yùn)用對(duì)應(yīng)邊的比相等,求線段的長(zhǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2004年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2004•無錫)已知直線y=-2x+b(b≠0)與x軸交于點(diǎn)A,與y軸交于點(diǎn)B;一拋物線的解析式為y=x2-(b+10)x+c.
(1)若該拋物線過點(diǎn)B,且它的頂點(diǎn)P在直線y=-2x+b上,試確定這條拋物線的解析式;
(2)過點(diǎn)B作直線BC⊥AB交x軸于點(diǎn)C,若拋物線的對(duì)稱軸恰好過C點(diǎn),試確定直線y=-2x+b的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年江蘇省無錫市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•無錫)已知直線y=-2x+b(b≠0)與x軸交于點(diǎn)A,與y軸交于點(diǎn)B;一拋物線的解析式為y=x2-(b+10)x+c.
(1)若該拋物線過點(diǎn)B,且它的頂點(diǎn)P在直線y=-2x+b上,試確定這條拋物線的解析式;
(2)過點(diǎn)B作直線BC⊥AB交x軸于點(diǎn)C,若拋物線的對(duì)稱軸恰好過C點(diǎn),試確定直線y=-2x+b的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2004•無錫)已知:如圖,Rt△ABC中,∠B=90°,∠A=30°,BC=6cm.點(diǎn)O從A點(diǎn)出發(fā),沿AB以每秒cm的速度向B點(diǎn)方向運(yùn)動(dòng),當(dāng)點(diǎn)O運(yùn)動(dòng)了t秒(t>0)時(shí),以O(shè)點(diǎn)為圓心的圓與邊AC相切于點(diǎn)D,與邊AB相交于E、F兩點(diǎn).過E作EG⊥DE交射線BC于G.
(1)若E與B不重合,問t為何值時(shí),△BEG與△DEG相似?
(2)問:當(dāng)t在什么范圍內(nèi)時(shí),點(diǎn)G在線段BC上當(dāng)t在什么范圍內(nèi)時(shí),點(diǎn)G在線段BC的延長(zhǎng)線上?
(3)當(dāng)點(diǎn)G在線段BC上(不包括端點(diǎn)B、C)時(shí),求四邊形CDEG的面積S(cm2)關(guān)于時(shí)間t(秒)的函數(shù)關(guān)系式,并問點(diǎn)O運(yùn)動(dòng)了幾秒鐘時(shí),S取得最大值最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國(guó)中考數(shù)學(xué)試題匯編《圓》(10)(解析版) 題型:填空題

(2004•無錫)已知圓錐母線長(zhǎng)6cm,底面直徑為5cm,則圓錐側(cè)面積為    cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2004•無錫)已知:如圖,Rt△ABC中,∠B=90°,∠A=30°,BC=6cm.點(diǎn)O從A點(diǎn)出發(fā),沿AB以每秒cm的速度向B點(diǎn)方向運(yùn)動(dòng),當(dāng)點(diǎn)O運(yùn)動(dòng)了t秒(t>0)時(shí),以O(shè)點(diǎn)為圓心的圓與邊AC相切于點(diǎn)D,與邊AB相交于E、F兩點(diǎn).過E作EG⊥DE交射線BC于G.
(1)若E與B不重合,問t為何值時(shí),△BEG與△DEG相似?
(2)問:當(dāng)t在什么范圍內(nèi)時(shí),點(diǎn)G在線段BC上當(dāng)t在什么范圍內(nèi)時(shí),點(diǎn)G在線段BC的延長(zhǎng)線上?
(3)當(dāng)點(diǎn)G在線段BC上(不包括端點(diǎn)B、C)時(shí),求四邊形CDEG的面積S(cm2)關(guān)于時(shí)間t(秒)的函數(shù)關(guān)系式,并問點(diǎn)O運(yùn)動(dòng)了幾秒鐘時(shí),S取得最大值最大值為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案