如圖,已知A點坐標為(5,0),直線y=x+b(b>0)與y軸交于點B,連接AB,∠a=75°,則b的值為______ ①.3②.
5
3
3
③.4④.
5
3
4

∵直線的解析式是y=x+b,
∴OB=OC=b,則∠BCA=45°;
又∵∠α=75°=∠BCA+∠BAC=45°+∠BAC(外角定理),
∴∠BAC=30°;
而點A的坐標是(5,0),
∴OA=5,
在Rt△BAO中,∠BAC=30°,OA=5,
∴tan∠BAO=
BO
AO
=
3
3

∴BO=
5
3
3
,即b=
5
3
3

故答案是:②.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:直線y=-
3
3
x+1與x軸、y軸分別交于A、B兩點,以AB為邊在第一象限內作正三角形ABC,⊙O′為△ABC的外接圓,與x軸交于另一點E.
(1)求C點坐標.
(2)求過點C與AB中點D的一次函數(shù)的解析式.
(3)求過E、O′、A三點的二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

直線l過點(1,-2),它與x軸的正半軸相交于點M,與y軸的負半軸相交于點N.如果M、N到原點的距離之和等于6.求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知一次函數(shù)y=-
3
4
x+6
的圖象與坐標軸交于A、B點(如圖),AE平分∠BAO,交x軸于點E.

(1)求點B的坐標;
(2)求直線AE的表達式;
(3)過點B作BF⊥AE,垂足為F,連接OF,試判斷△OFB的形狀,并求△OFB的面積.
(4)若將已知條件“AE平分∠BAO,交x軸于點E”改變?yōu)椤包cE是線段OB上的一個動點(點E不與點O、B重合)”,過點B作BF⊥AE,垂足為F.設OE=x,BF=y,試求y與x之間的函數(shù)關系式,并寫出函數(shù)的定義域.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

“五一黃金周”的某一天,小明全家上午8時自駕小汽車從家里出發(fā),到距離180千米的某著名旅游景點游玩.該小汽車離家的距離s(千米)與時間t(時)的關系可以用圖中的曲線表示.根據(jù)圖象提供的有關信息,解答下列問題:
(1)小明全家在旅游景點游玩了多少小時?
(2)求出返程途中,s(千米)與時間t(時)的函數(shù)關系,并回答小明全家到家是什么時間?
(3)若出發(fā)時汽車油箱中存油15升,該汽車的油箱總容量為35升,汽車每行駛1千米耗油
1
9
升.請你就“何時加油和加油量”給小明全家提出一個合理化的建議.(加油所用時間忽略不計)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某旅游商品經(jīng)銷店欲購進A、B兩種紀念品,若用380元購進A種紀念品7件,B種紀念品8件;也可以用380元購進A種紀念品10件,B種紀念品6件.
(1)求A、B兩種紀念品的進價分別為多少?
(2)若該商店每銷售1件A種紀念品可獲利5元,每銷售1件B種紀念品可獲利7元,該商店準備用不超過900元購進A、B兩種紀念品40件,且這兩種紀念品全部售出時總獲利不低于216元,問應該怎樣進貨,才能使總獲利最大,最大為多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某養(yǎng)雞場計劃購買甲、乙兩種小雞苗共2000只進行飼養(yǎng),已知甲種小雞苗每只2元,乙種小雞苗每只3元.
(1)若購買這批小雞苗共用了4500元,求甲、乙兩種小雞苗各購買了多少只?
(2)若購買這批小雞苗的錢不超過4700元,問應選購甲種小雞苗至少多少只?
(3)相關資料表明:甲、乙兩種小雞苗的成活率分別為94%和99%,若要使這批小雞苗的成活率不低于96%且買小雞的總費用最小,問應選購甲、乙兩種小雞苗各多少只?總費用最小是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線y=-
3
3
x+1
與x軸、y軸分別交于A、B,以線段AB為直角邊在第一象限內作等腰Rt△ABC,∠BAC=90°,如果在第二象限內有一點P(a,
1
2
),且△ABP的面積與△ABC的面積相等,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

為緩解油價上漲給出租車行業(yè)帶來的成本壓力,某巿自2007年11月17日起,調整出租車運價,調整方案見下列表格及圖象(其中a,b,c為常數(shù)).
設行駛路程xkm時,調價前的運價y1(元),調價后的運價為y2(元).如圖,折線ABCD表示y2與x之間的函數(shù)關系式,線段EF表示當0≤x≤3時,y1與x的函數(shù)關系式,根據(jù)圖表信息,完成下列各題:
行駛路程收費標準
調價前調價后
不超過3km的部分起步價6元起步價a元
超過3km不超出6km的部分每公里2.1元每公里b元
超出6km的部分每公里c元
①填空:a=______,b=______,c=______;
②寫出當x>3時,y1與x的關系,并在上圖中畫出該函數(shù)的圖象;
③函數(shù)y1與y2的圖象是否存在交點?若存在,求出交點的坐標,并說明該點的實際意義;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案