(2006•舟山)如圖,一扇窗戶打開后,用窗鉤AB可將其固定,這里所運用的幾何原理是   
【答案】分析:將其固定,顯然是運用了三角形的穩(wěn)定性.
解答:解:一扇窗戶打開后,用窗鉤BC可將其固定,這里所運用的幾何原理是三角形的穩(wěn)定性.
點評:注意能夠運用數(shù)學(xué)知識解釋生活中的現(xiàn)象,考查三角形的穩(wěn)定性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2006•舟山)如圖,已知拋物線y=ax2+4ax+t(a>0)交x軸于A、B兩點,交y軸于點C,拋物線的對稱軸交x軸于點E,點B的坐標(biāo)為(-1,0).
(1)求拋物線的對稱軸及點A的坐標(biāo);
(2)過點C作x軸的平行線交拋物線的對稱軸于點P,你能判斷四邊形ABCP是什么四邊形?并證明你的結(jié)論;
(3)連接CA與拋物線的對稱軸交于點D,當(dāng)∠APD=∠ACP時,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年浙江省舟山市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•舟山)如圖,已知拋物線y=ax2+4ax+t(a>0)交x軸于A、B兩點,交y軸于點C,拋物線的對稱軸交x軸于點E,點B的坐標(biāo)為(-1,0).
(1)求拋物線的對稱軸及點A的坐標(biāo);
(2)過點C作x軸的平行線交拋物線的對稱軸于點P,你能判斷四邊形ABCP是什么四邊形?并證明你的結(jié)論;
(3)連接CA與拋物線的對稱軸交于點D,當(dāng)∠APD=∠ACP時,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年浙江省臺州市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•舟山)如圖,已知拋物線y=ax2+4ax+t(a>0)交x軸于A、B兩點,交y軸于點C,拋物線的對稱軸交x軸于點E,點B的坐標(biāo)為(-1,0).
(1)求拋物線的對稱軸及點A的坐標(biāo);
(2)過點C作x軸的平行線交拋物線的對稱軸于點P,你能判斷四邊形ABCP是什么四邊形?并證明你的結(jié)論;
(3)連接CA與拋物線的對稱軸交于點D,當(dāng)∠APD=∠ACP時,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《圖形認識初步》(01)(解析版) 題型:選擇題

(2006•舟山)如圖,長方體的面有( )

A.4個
B.5個
C.6個
D.7個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《平面直角坐標(biāo)系》(02)(解析版) 題型:解答題

(2006•舟山)如圖1,在直角坐標(biāo)系中,點A的坐標(biāo)為(1,0),以O(shè)A為邊在第四象限內(nèi)作等邊△AOB,點C為x軸的正半軸上一動點(OC>1),連接BC,以BC為邊在第四象限內(nèi)作等邊△CBD,直線DA交y軸于點E.
(1)試問△OBC與△ABD全等嗎?并證明你的結(jié)論;
(2)隨著點C位置的變化,點E的位置是否會發(fā)生變化?若沒有變化,求出點E的坐標(biāo);若有變化,請說明理由;
(3)如圖2,以O(shè)C為直徑作圓,與直線DE分別交于點F、G,設(shè)AC=m,AF=n,用含n的代數(shù)式表示m.

查看答案和解析>>

同步練習(xí)冊答案