【題目】如圖,在直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)A(0,4),B(1,0),C(5,0),其對(duì)稱軸與x軸相交于點(diǎn)M.
(1)求拋物線的解析式和對(duì)稱軸;
(2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使△PAB的周長(zhǎng)最?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)連接AC,在直線AC的下方的拋物線上,是否存在一點(diǎn)N,使△NAC的面積最大?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)
【解答】解:根據(jù)已知條件可設(shè)拋物線的解析式為y=a(x﹣1)(x﹣5),
把點(diǎn)A(0,4)代入上式得:a=,
∴y=(x﹣1)(x﹣5)=x2﹣x+4=(x﹣3)2﹣,
∴拋物線的對(duì)稱軸是:x=3;
(2)
P點(diǎn)坐標(biāo)為(3,).
理由如下:
∵點(diǎn)A(0,4),拋物線的對(duì)稱軸是x=3,
∴點(diǎn)A關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)A′的坐標(biāo)為(6,4)
如圖1,連接BA′交對(duì)稱軸于點(diǎn)P,連接AP,此時(shí)△PAB的周長(zhǎng)最小.
設(shè)直線BA′的解析式為y=kx+b,
把A′(6,4),B(1,0)代入得,
解得,
∴y=x﹣,
∵點(diǎn)P的橫坐標(biāo)為3,
∴y=×3﹣=,
∴P(3,).
(3)
在直線AC的下方的拋物線上存在點(diǎn)N,使△NAC面積最大.
設(shè)N點(diǎn)的橫坐標(biāo)為t,此時(shí)點(diǎn)N(t,t2﹣t+4)(0<t<5),
如圖2,過(guò)點(diǎn)N作NG∥y軸交AC于G;作AD⊥NG于D,
由點(diǎn)A(0,4)和點(diǎn)C(5,0)可求出直線AC的解析式為:y=﹣x+4,
把x=t代入得:y=﹣t+4,則G(t,﹣t+4),
此時(shí):NG=﹣t+4﹣(t2﹣t+4)=﹣t2+4t,
∵AD+CF=CO=5,
∴S△ACN=S△ANG+S△CGN=AD×NG+NG×CF=NGOC=×(﹣t2+4t)×5=﹣2t2+10t=﹣2(t﹣)2+,
∴當(dāng)t=時(shí),△CAN面積的最大值為,
由t=,得:y=t2﹣t+4=﹣3,
∴N(,﹣3).
【解析】(1)拋物線經(jīng)過(guò)點(diǎn)A(0,4),B(1,0),C(5,0),可利用兩點(diǎn)式法設(shè)拋物線的解析式為y=a(x﹣1)(x﹣5),代入A(0,4)即可求得函數(shù)的解析式,則可求得拋物線的對(duì)稱軸;
(2)點(diǎn)A關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)A′的坐標(biāo)為(6,4),連接BA′交對(duì)稱軸于點(diǎn)P,連接AP,此時(shí)△PAB的周長(zhǎng)最小,可求出直線BA′的解析式,即可得出點(diǎn)P的坐標(biāo).
(3)在直線AC的下方的拋物線上存在點(diǎn)N,使△NAC面積最大.設(shè)N點(diǎn)的橫坐標(biāo)為t,此時(shí)點(diǎn)N(t,t2﹣t+4)(0<t<5),再求得直線AC的解析式,即可求得NG的長(zhǎng)與△ACN的面積,由二次函數(shù)最大值的問(wèn)題即可求得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸上,函數(shù)y=的圖象過(guò)點(diǎn)P(4,3)和矩形的頂點(diǎn)B(m,n)(0<m<4).
(1)求k的值.
(2)連接PA,PB,若△ABP的面積為6,求直線BP的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,△OA1B1是邊長(zhǎng)為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點(diǎn)B1成中心對(duì)稱,再作△B2A3B3與△B2A2B1關(guān)于點(diǎn)B2成中心對(duì)稱,如此作下去,則△B2nA2n+1B2n+1(n是正整數(shù))的頂點(diǎn)A2n+1的坐標(biāo)是( 。
A.(4n﹣1,)
B.(2n﹣1,)
C.(4n+1,)
D.(2n+1,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了參加中考體育測(cè)試,甲、乙、丙三位同學(xué)進(jìn)行足球傳球訓(xùn)練,球從一個(gè)人腳下隨機(jī)傳到另一個(gè)人腳下,且每位傳球人傳給其余兩人的機(jī)會(huì)是均等的,由甲開(kāi)始傳球,共傳球三次.
(1)請(qǐng)利用樹(shù)狀圖列舉出三次傳球的所有可能情況;
(2)求三次傳球后,球回到甲腳下的概率;
(3)三次傳球后,球回到甲腳下的概率大還是傳到乙腳下的概率大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①所示,將直尺擺放在三角板上,使直尺與三角板的邊分別交于點(diǎn)D,E,F(xiàn),G,已知∠CGD=42°
(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
(1)求∠CEF的度數(shù);
(2)將直尺向下平移,使直尺的邊緣通過(guò)三角板的頂點(diǎn)B,交AC邊于點(diǎn)H,如圖②所示,點(diǎn)H,B在直尺上的讀數(shù)分別為4,13.4,求BC的長(zhǎng)(結(jié)果保留兩位小數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB與CE交于F,ED與AB,BC,分別交于M,H.
(1)求證:CF=CH;
(2)如圖2,△ABC不動(dòng),將△EDC繞點(diǎn)C旋轉(zhuǎn)到∠BCE=45°時(shí),試判斷四邊形ACDM是什么四邊形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)慶期間,為了滿足百姓的消費(fèi)需求,某商店計(jì)劃用170000元購(gòu)進(jìn)一批家電,這批家電的進(jìn)價(jià)和售價(jià)如表:
類別 | 彩電 | 冰箱 | 洗衣機(jī) |
進(jìn)價(jià)(元/臺(tái)) | 2000 | 1600 | 1000 |
售價(jià)(元/臺(tái)) | 2300 | 1800 | 1100 |
若在現(xiàn)有資金允許的范圍內(nèi),購(gòu)買表中三類家電共100臺(tái),其中彩電臺(tái)數(shù)是冰箱臺(tái)數(shù)的2倍,設(shè)該商店購(gòu)買冰箱x臺(tái).
(1)商店至多可以購(gòu)買冰箱多少臺(tái)?
(2)購(gòu)買冰箱多少臺(tái)時(shí),能使商店銷售完這批家電后獲得的利潤(rùn)最大?最大利潤(rùn)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(2,n),B(m,n)(m>2),D(p,q)(q<n),點(diǎn)B,D在直線y=x+1上.四邊形ABCD的對(duì)角線AC,BD相交于點(diǎn)E,且AB∥CD,CD=4,BE=DE,△AEB的面積是2.
求證:四邊形ABCD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)習(xí)了三角形全等的判定方法和直角三角形全等的判定方法后,我們繼續(xù)對(duì)“兩個(gè)三角形滿足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等”的情況進(jìn)行研究.
(初步思考)我們不妨將問(wèn)題用符號(hào)語(yǔ)言表示為:在△ABC和△DEF中,AC=DF,BC=EF,,然后,對(duì)進(jìn)行分類,可分為“是直角,鈍角,銳角”三種情況進(jìn)行探索.
(深入探究)(1)當(dāng)是直角時(shí),如圖①,在△ABC和△DEF中,AC=DF,BC=EF,,根據(jù) 可以知道.
(2)當(dāng)是鈍角時(shí),如圖②,在△ABC和△DEF中,AC=DF,BC=EF,,且都是鈍角,求證:.
(3)當(dāng)是銳角時(shí),在△ABC和△DEF中,AC=DF,BC=EF,,且都是銳角,請(qǐng)你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等(不寫(xiě)做法,保留作圖痕跡)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com