【題目】如圖,在直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)A(0,4),B(1,0),C(5,0),其對(duì)稱軸與x軸相交于點(diǎn)M.

(1)求拋物線的解析式和對(duì)稱軸;
(2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使△PAB的周長(zhǎng)最?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)連接AC,在直線AC的下方的拋物線上,是否存在一點(diǎn)N,使△NAC的面積最大?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)

【解答】解:根據(jù)已知條件可設(shè)拋物線的解析式為y=a(x﹣1)(x﹣5),

把點(diǎn)A(0,4)代入上式得:a=

∴y=(x﹣1)(x﹣5)=x2x+4=(x﹣3)2,

∴拋物線的對(duì)稱軸是:x=3;


(2)

P點(diǎn)坐標(biāo)為(3,).

理由如下:

∵點(diǎn)A(0,4),拋物線的對(duì)稱軸是x=3,

∴點(diǎn)A關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)A′的坐標(biāo)為(6,4)

如圖1,連接BA′交對(duì)稱軸于點(diǎn)P,連接AP,此時(shí)△PAB的周長(zhǎng)最小.

設(shè)直線BA′的解析式為y=kx+b,

把A′(6,4),B(1,0)代入得,

解得,

∴y=x﹣

∵點(diǎn)P的橫坐標(biāo)為3,

∴y=×3﹣=

∴P(3,).


(3)

在直線AC的下方的拋物線上存在點(diǎn)N,使△NAC面積最大.

設(shè)N點(diǎn)的橫坐標(biāo)為t,此時(shí)點(diǎn)N(t,t2t+4)(0<t<5),

如圖2,過(guò)點(diǎn)N作NG∥y軸交AC于G;作AD⊥NG于D,

由點(diǎn)A(0,4)和點(diǎn)C(5,0)可求出直線AC的解析式為:y=﹣x+4,

把x=t代入得:y=﹣t+4,則G(t,﹣t+4),

此時(shí):NG=﹣t+4﹣(t2t+4)=﹣t2+4t,

∵AD+CF=CO=5,

∴SACN=SANG+SCGN=AD×NG+NG×CF=NGOC=×(﹣t2+4t)×5=﹣2t2+10t=﹣2(t﹣2+,

∴當(dāng)t=時(shí),△CAN面積的最大值為,

由t=,得:y=t2t+4=﹣3,

∴N(,﹣3).


【解析】(1)拋物線經(jīng)過(guò)點(diǎn)A(0,4),B(1,0),C(5,0),可利用兩點(diǎn)式法設(shè)拋物線的解析式為y=a(x﹣1)(x﹣5),代入A(0,4)即可求得函數(shù)的解析式,則可求得拋物線的對(duì)稱軸;
(2)點(diǎn)A關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)A′的坐標(biāo)為(6,4),連接BA′交對(duì)稱軸于點(diǎn)P,連接AP,此時(shí)△PAB的周長(zhǎng)最小,可求出直線BA′的解析式,即可得出點(diǎn)P的坐標(biāo).
(3)在直線AC的下方的拋物線上存在點(diǎn)N,使△NAC面積最大.設(shè)N點(diǎn)的橫坐標(biāo)為t,此時(shí)點(diǎn)N(t,t2t+4)(0<t<5),再求得直線AC的解析式,即可求得NG的長(zhǎng)與△ACN的面積,由二次函數(shù)最大值的問(wèn)題即可求得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸上,函數(shù)y=的圖象過(guò)點(diǎn)P(4,3)和矩形的頂點(diǎn)B(m,n)(0<m<4).

(1)求k的值.
(2)連接PA,PB,若△ABP的面積為6,求直線BP的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的平面直角坐標(biāo)系中,△OA1B1是邊長(zhǎng)為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點(diǎn)B1成中心對(duì)稱,再作△B2A3B3與△B2A2B1關(guān)于點(diǎn)B2成中心對(duì)稱,如此作下去,則△B2nA2n+1B2n+1(n是正整數(shù))的頂點(diǎn)A2n+1的坐標(biāo)是( 。

A.(4n﹣1,
B.(2n﹣1,
C.(4n+1,
D.(2n+1,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了參加中考體育測(cè)試,甲、乙、丙三位同學(xué)進(jìn)行足球傳球訓(xùn)練,球從一個(gè)人腳下隨機(jī)傳到另一個(gè)人腳下,且每位傳球人傳給其余兩人的機(jī)會(huì)是均等的,由甲開(kāi)始傳球,共傳球三次.
(1)請(qǐng)利用樹(shù)狀圖列舉出三次傳球的所有可能情況;
(2)求三次傳球后,球回到甲腳下的概率;
(3)三次傳球后,球回到甲腳下的概率大還是傳到乙腳下的概率大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①所示,將直尺擺放在三角板上,使直尺與三角板的邊分別交于點(diǎn)D,E,F(xiàn),G,已知∠CGD=42°
(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

(1)求∠CEF的度數(shù);
(2)將直尺向下平移,使直尺的邊緣通過(guò)三角板的頂點(diǎn)B,交AC邊于點(diǎn)H,如圖②所示,點(diǎn)H,B在直尺上的讀數(shù)分別為4,13.4,求BC的長(zhǎng)(結(jié)果保留兩位小數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB與CE交于F,ED與AB,BC,分別交于M,H.

(1)求證:CF=CH;
(2)如圖2,△ABC不動(dòng),將△EDC繞點(diǎn)C旋轉(zhuǎn)到∠BCE=45°時(shí),試判斷四邊形ACDM是什么四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)慶期間,為了滿足百姓的消費(fèi)需求,某商店計(jì)劃用170000元購(gòu)進(jìn)一批家電,這批家電的進(jìn)價(jià)和售價(jià)如表:

類別

彩電

冰箱

洗衣機(jī)

進(jìn)價(jià)(元/臺(tái))

2000

1600

1000

售價(jià)(元/臺(tái))

2300

1800

1100

若在現(xiàn)有資金允許的范圍內(nèi),購(gòu)買表中三類家電共100臺(tái),其中彩電臺(tái)數(shù)是冰箱臺(tái)數(shù)的2倍,設(shè)該商店購(gòu)買冰箱x臺(tái).
(1)商店至多可以購(gòu)買冰箱多少臺(tái)?
(2)購(gòu)買冰箱多少臺(tái)時(shí),能使商店銷售完這批家電后獲得的利潤(rùn)最大?最大利潤(rùn)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(2,n),B(m,n)(m>2),D(p,q)(q<n),點(diǎn)B,D在直線y=x+1上.四邊形ABCD的對(duì)角線AC,BD相交于點(diǎn)E,且AB∥CD,CD=4,BE=DE,△AEB的面積是2.
求證:四邊形ABCD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)習(xí)了三角形全等的判定方法和直角三角形全等的判定方法后,我們繼續(xù)對(duì)兩個(gè)三角形滿足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等的情況進(jìn)行研究.

初步思考我們不妨將問(wèn)題用符號(hào)語(yǔ)言表示為:在ABCDEF中,AC=DF,BC=EF,,然后,對(duì)進(jìn)行分類,可分為是直角,鈍角,銳角三種情況進(jìn)行探索.

深入探究)(1)當(dāng)是直角時(shí),如圖①,在ABCDEF中,AC=DF,BC=EF,,根據(jù) 可以知道.

(2)當(dāng)是鈍角時(shí),如圖②,在ABCDEF中,AC=DF,BC=EF,,且都是鈍角,求證:.

(3)當(dāng)是銳角時(shí),在ABCDEF中,AC=DF,BC=EF,,且都是銳角,請(qǐng)你用尺規(guī)在圖③中作出DEF,使DEFABC不全等(不寫(xiě)做法,保留作圖痕跡)

查看答案和解析>>

同步練習(xí)冊(cè)答案