【題目】如圖,在△ABC中,∠BAC=120°,若DE,FG分別垂直平分AB,AC,△AEF的周長為10cm,求BC的長及∠EAF的度數(shù).
【答案】10;60°
【解析】
①根據(jù)線段垂直平分線的性質(zhì)求出△EAF的周長證明△EAF與BC的關(guān)系從而求出BC的長度;②根據(jù)三角形內(nèi)角和定理求出∠B+∠C=60°,再根據(jù)線段垂直平分線的性質(zhì)求出∠BAE+∠CAF=∠B+∠C,然后求出∠EAF.
解:①∵DE,FG分別垂直平分邊AB,AC,
∴EA=EB,FA=FC,
∴△EAF的周長=EA+FA+EF=BE+EF+FC=BC
∴BC=10;
②∵∠BAC=120°,
∴∠B+∠C=180°-120°=60°,
∵DE、FG分別垂直平分AB和AC,
∴∠BAE=∠B,∠CAF=∠C,
∴∠BAE+∠CAF=60°,
∴∠EAF=120°-60°=60°.
故答案為:10;60°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,,,,給出下列結(jié)論:①;②;③;④.其中正確的結(jié)論是( )
A. ①② B. ②③ C. ①②③ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,工人師傅常用“卡鉗”這種工具測定工件內(nèi)槽的寬.卡鉗由兩根鋼條AA′、BB′組成,O為AA′、BB′的中點.只要量出A′B′的長度,由三角形全等就可以知道工件內(nèi)槽AB的長度.則判定△OAB≌△OA′B′的依據(jù)是( )
A. SASB. ASAC. SSSD. AAS
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列文字,對于一個圖形,通過不同的方法計算圖形的面積,可以得到一個數(shù)學(xué)等式,例如:由圖1可以得到,請解答下列問題:
(1)寫出圖2中所表示的數(shù)學(xué)等式 ;
(2)利用(1)中所得到的結(jié)論,解決問題:已知,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列語句:①-1是1的平方根。②帶根號的數(shù)都是無理數(shù)。③-1的立方根是-1。④的立方根是2。⑤(-2)2的算術(shù)平方根是2。⑥-125的立方根是±5。⑦有理數(shù)和數(shù)軸上的點一一對應(yīng)。其中正確的有( )
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,學(xué)校位于高速路AB的一側(cè)(AB成一條直線),點A,B為高速路上距學(xué)校直線距離最近的2個隧道出入口,點C、D為學(xué)校的兩棟教學(xué)樓,經(jīng)測量∠ACB=90°,∠ADB>90°,AC=600m,AB=1000m,點D到高速路的最短直線距離DE=400m.
(1)求教學(xué)樓C到隧道口B的直線距離;
(2)比較AC2+BC2與AD2+BD2誰大誰小,試用計算說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線分別與軸交于兩點,過點的直線交軸負(fù)半軸于,且.
求點坐標(biāo).
求直線的解析式.
直線的解析式為,直線交于點,交于點,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形OAA1的直角邊OA在x軸上,點A1在第一象限,且OA=1,以點A1為直角頂點,OA1為一直角邊作等腰直角三角形OA1A2,再以點A2為直角頂點,OA2為直角邊作等腰直角三角形OA2A3…依此規(guī)律,則點A2018的坐標(biāo)是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com