【題目】如圖,在△ABC中,AB=AC,BAC=56°,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EF(EBC上,FAC)折疊,點C與點O恰好重合,則∠OEC______度.

【答案】112.

【解析】

連接OBOC,根據(jù)角平分線的定義求出∠BAO=28°,利用等腰三角形兩底角相等求出∠ABC,根據(jù)線段垂直平分線上的點到兩端點的距離相等可得OA=OB,再根據(jù)等邊對等角求出∠OBA,然后求出∠OBC,再根據(jù)等腰三角形的性質(zhì)可得OB=OC,然后求出∠OCE,根據(jù)翻折變換的性質(zhì)可得OE=CE,然后利用等腰三角形兩底角相等列式計算即可得解.

如圖,連接OBOC,

OA平分∠BAC,BAC=56°,

∴∠BAO=BAC=×56°=28°,

AB=AC,BAC=56°,

∴∠ABC= (180°BAC)=×(180°56°)=62°,

OD垂直平分AB

OA=OB,

∴∠OBA=BAO=28°,

∴∠OBC=ABCOBA=62°28°=34°,

由等腰三角形的性質(zhì),OB=OC

∴∠OCE=OBC=34°,

∵∠C沿EF(EBC,FAC)折疊,點C與點O恰好重合,

OE=CE,

∴∠OEC=180°2×34°=112°.

故答案為:112.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DBC 中,DB=DC,A DBC 外一點,且∠BAC=BDC,DE AC E,

(1)求證:AD 平分ABC 的外角;

(2)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若等腰三角形的周長為26,一邊為11,則腰長為( ).

A. 11B. 7.5C. 117.5D. 以上都不對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】墊球是排球隊常規(guī)訓練的重要項目之一.訓練課上,甲、乙、丙三人相互之間進行墊球練習,每個人的球都等可能的傳給其他兩人,球最先從甲手中傳出,共進行兩次墊球

1)請列舉出兩次傳球的所有等可能情況;

2)求兩次傳球后,球回到甲手中的概率;

3)兩次傳球后,球傳到乙手中的概率大還是傳到丙手中的概率大?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC的周長是16,OB、OC分別平分∠ABC∠ACB,OD⊥BCDOD=2,△ABC的面積是________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(1)﹣15﹣(﹣8+(﹣11)﹣12

2)(﹣3×(﹣4)﹣15÷

3×36

4)﹣22+3×(﹣14﹣(﹣4×5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在數(shù)軸上點表示的數(shù)分別為-2,0,6,點與點之間的距離表示為,點與點之間的距離表示為,點與點之間的距離表示為

1)填空:

2)點開始在數(shù)軸上運動,若點以每秒1個單位長度的速度向左運動,同時,點和點分別以每秒2個單位長度,5個單位長度的速度向右運動.

①設運動時間為,請用含有的算式分別表示出;

②在①的條件下,的值是否隨著時間的變化而變化?若變化,請說明理由;若不變,請求其值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DEABEDFACF,AD平分∠BAC,BD=CD

(1)求證:BE=CF;

(2)已知AC=10DE=4,BE=2,求△AEC的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學活動課上,小明提出這樣一個問題:∠B=C=90°,EBC的中點,DE平分∠ADC,如圖,則下列說法正確的有( 。﹤

(1)AE平分∠DAB;(2)EBA≌△DCE;(3)AB+CD=AD;(4)AEDE;(5)ABCD.

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

同步練習冊答案