【題目】在平面直角坐標系中,一次函數(shù)(k,b都是常數(shù),且),的圖象經(jīng)過點(1,0)和(0,3).
(1)求此函數(shù)的表達式.
(2)已知點在該函數(shù)的圖象上,且.
①求點P的坐標.
②若函數(shù)(a是常數(shù),且)的圖象與函數(shù)的圖象相交于點P,寫出不等式的解集.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD繞點C順時針旋轉(zhuǎn)90°后得到矩形CEFG,連接DG交EF于H,連接AF交DG于M;
(1)求證:AM=FM;
(2)若∠AMD=a.求證:=cosα.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,,,,…都是等邊三角形,其邊長依次為2,4,6,…,其中點的坐標為,點的坐標為,點的坐標為,點的坐標為,…,按此規(guī)律排下去,則點的坐標為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為圓O的直徑,點C為圓O上一點,若∠BAC=∠CAM,過點C作直線l垂直于射線AM,垂足為點D.
(1)試判斷CD與圓O的位置關(guān)系,并說明理由;
(2)若直線l與AB的延長線相交于點E,圓O的半徑為3,并且∠CAB=30°,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(閱讀理解)
已知:如圖,等腰直角三角形中,,是平分線,交邊于點.
求證:.
證明:在上截取,連接,
則由已知條件易知:.
∴,
又∵,∴是等腰直角三角形,
∴ ∴.
(數(shù)學思考)
現(xiàn)將原題中的“是平分線,交邊于點”換成“是的外角平分線,交邊的延長線于點”,如圖,其他條件不變,請你猜想線段之間的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸的正半軸交于點C,頂點為D.
(1)求頂點D的坐標(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過點C.
①求拋物線的函數(shù)關(guān)系式;
②如圖2,點E是y軸負半軸上一點,連接BE,將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°,得到△PMN(點P、M、N分別和點O、B、E對應),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標;
③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰ABC中,AB=AC,∠BAC=50°,∠BAC的平分線與AB的垂直平分線交于點O、點C沿EF折疊后與點O重合,則∠CEF的度數(shù)是( 。
A. 60° B. 55° C. 50° D. 45°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx(a≠0)中自變量x和函數(shù)值y的部分對應值如下表:
x | … | ﹣2.5 | ﹣2 | ﹣1 | 0 | 0.5 | … |
y | … | ﹣5 | 0 | 4 | 0 | ﹣5 | … |
(1)求二次函數(shù)解析式,并寫出頂點坐標;
(2)在直角坐標系中畫出該拋物線的圖象;
(3)若該拋物線上兩點A(x1,y1)、B(x2,y2)的橫坐標滿足x1<x2<﹣1,試比較y1與y2的大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線c:y=x2+2x﹣3,將拋物線c平移得到拋物線c′,如果兩條拋物線,關(guān)于直線x=1對稱,那么下列說法正確的是( 。
A. 將拋物線c沿x軸向右平移個單位得到拋物線c′ B. 將拋物線c沿x軸向右平移4個單位得到拋物線c′
C. 將拋物線c沿x軸向右平移個單位得到拋物線c′ D. 將拋物線c沿x軸向右平移6個單位得到拋物線c′
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com