【題目】某商品的進(jìn)價(jià)為每件50元,售價(jià)為每件60元,每個(gè)月可賣出200件;如果每件商品的售價(jià)每上漲1元.則每個(gè)月少賣10件.設(shè)每件商品的售價(jià)上漲x元(x為正整數(shù)),每個(gè)月的銷售利潤(rùn)為y元.
(1)求y與x的函數(shù)關(guān)系式;
(2)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大的月利潤(rùn)是多少元?
(3)若每個(gè)月的利潤(rùn)不低于2160元,售價(jià)應(yīng)在什么范圍?
【答案】(1)y=﹣10x2+100x+2000;(2)售價(jià)定為65元時(shí),商場(chǎng)所獲的利潤(rùn)最大,最大利潤(rùn)是2250元;
(3)當(dāng)62≤售價(jià)≤68時(shí),每個(gè)月的利潤(rùn)不低于2160元.
【解析】
試題分析:(1)根據(jù)題意,得出每件商品的利潤(rùn)以及商品總的銷量,即可得出y與x的函數(shù)關(guān)系式;
(2)根據(jù)題意利用配方法得出二次函數(shù)的頂點(diǎn)形式,進(jìn)而得出當(dāng)y的最大值;
(3)利用(1)中的函數(shù)解析式建立不等式,畫出圖象,利用圖象求得不等式的解集即可.
試題解析:(1)每件商品的利潤(rùn)為:(60﹣50+x)元,
總銷量為:(200﹣10x)件,
商品利潤(rùn)為:
y=(60﹣50+x)(200﹣10x)
=(10+x)(200﹣10x)
=﹣10x2+100x+2000;
(2)y=﹣10x2+100x+2000
=﹣10(x2﹣10x)+2000
=﹣10(x﹣5)2+2250;
故當(dāng)x=5時(shí),最大月利潤(rùn)y=2250元,
這時(shí)售價(jià)為60+5=65(元),
答:售價(jià)定為65元時(shí),商場(chǎng)所獲的利潤(rùn)最大,最大利潤(rùn)是2250元;
(3)由(1)知,y=﹣10x2+100x+2000(0<x≤12).
﹣10x2+100x+2000≥2160,
令﹣10x2+100x+2000=0
解得,x=2或x=8,60+2=62,60+8=68,
如圖,
所以當(dāng)62≤售價(jià)≤68時(shí),每個(gè)月的利潤(rùn)不低于2160元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各對(duì)等式,是根據(jù)等式的性質(zhì)進(jìn)行變形的,其中錯(cuò)誤的是( ).
A.4x-1=5x+2→x=-3
B. - =23→ - =230
C. + =0.23→ + =23
D. - =1→2(x+5)-3(x-3)=6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題及函數(shù)y=x,y=x2和y=的圖象:
①如果>a>a2,那么0<a<1;
②如果a2>a>,那么a>1;
③如果>a2>a,那么﹣1<a<0;
④如果a2>>a,那么a<﹣1.
A.正確的命題是①② B.錯(cuò)誤的命題是②③④
C.正確的命題是①④ D.錯(cuò)誤的命題只有③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠ABC=90°,AC=BD,AC⊥BD,若AB=4, AD=5,則DC的長(zhǎng) ( ).
A. 7 B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD是中線,∠ACB=90°,AC=BC,點(diǎn)E,F分別為AB,AC上的動(dòng)點(diǎn)(均不與端點(diǎn)重合),且CE⊥BF,垂足為H,BF與CD相交于G.
(1)求證:AE=CG;
(2)當(dāng)線段AE,CF之間滿足什么數(shù)量關(guān)系時(shí),BF為△ABC的角平分線?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.A、B、C三點(diǎn)在數(shù)軸上,A表示的數(shù)為-10,B表示的數(shù)為14,點(diǎn)C在點(diǎn)A與點(diǎn)B之間,且AC=BC.
(1)求A、B兩點(diǎn)間的距離;
(2)求C點(diǎn)對(duì)應(yīng)的數(shù);
(3)甲、乙分別從A、B兩點(diǎn)同時(shí)相向運(yùn)動(dòng),甲的速度是1個(gè)單位長(zhǎng)度/s,乙的速度是2個(gè)單位長(zhǎng)度/s,求相遇點(diǎn)D對(duì)應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形EFGH是矩形ABCD的內(nèi)接矩形,且EF:FG=3:1,AB:BC=2:1,則tan∠AHE的值為( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題背景】
(1)如圖1的圖形我們把它稱為“8字形”,請(qǐng)說明∠A+∠B=∠C+∠D;
【簡(jiǎn)單應(yīng)用】
(2)如圖2,AP、CP分別平分∠BAD.∠BCD,若∠ABC=36°,∠ADC=16°,
求∠P的度數(shù);
【問題探究】
(3)如圖3,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,請(qǐng)猜想∠P的度數(shù),并說明理由.
【拓展延伸】
(4)在圖4中,若設(shè)∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間的數(shù)量關(guān)系為: ______ (用α、β表示∠P,不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=BC=AC=12cm,現(xiàn)有兩點(diǎn)M、N分別從點(diǎn)A、點(diǎn)B同時(shí)出發(fā),沿三角形的邊運(yùn)動(dòng),已知點(diǎn)M的速度為1cm/s,點(diǎn)N的速度為2cm/s.當(dāng)點(diǎn)N第一次到達(dá)B點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動(dòng).
(1)點(diǎn)M、N運(yùn)動(dòng)幾秒后,M、N兩點(diǎn)重合?
(2)點(diǎn)M、N運(yùn)動(dòng)幾秒后,可得到等邊三角形△AMN?
(3)當(dāng)點(diǎn)M、N在BC邊上運(yùn)動(dòng)時(shí),能否得到以MN為底邊的等腰三角形?如存在,請(qǐng)求出此時(shí)M、N運(yùn)動(dòng)的時(shí)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com