6.(1)若關(guān)于x的二次三項(xiàng)式x2+px+12能在整數(shù)范圍內(nèi)因式分解為(x+a)(x+b),其中a,b均為整數(shù),請(qǐng)寫出所有符合條件的p的值,并將相應(yīng)的多項(xiàng)式因式分解.
(2)試分解因式x2+x-12.

分析 (1)利用十字相乘法的方法判斷確定出所有p的值即可;
(2)原式利用十字相乘法分解即可.

解答 解:(1)根據(jù)題意得:x2+px+12=(x+1)(x+12)=(x+2)(x+6)=(x+3)(x+4)=(x-1)(x-12)=(x-2)(x-6)=(x-3)(x-4),
則所有p的值為13,8,7,-13,-8,-7;
(2)原式=(x-3)(x+4).

點(diǎn)評(píng) 此題考查了因式分解-十字相乘法,熟練掌握十字相乘法是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.(1)如圖1,寫出△ABC的各頂點(diǎn)坐標(biāo),并畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1,寫出△ABC關(guān)于x軸對(duì)稱的△A2B2C2的各點(diǎn)坐標(biāo).
(2)如圖2,△ABC與△DEF關(guān)于直線l對(duì)稱,請(qǐng)用無刻度的直尺,在下面兩個(gè)圖中分別作出直線l.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.已知:如圖,△ABC中,AD⊥BC于D,E是AD上一點(diǎn),BE的延長(zhǎng)線交AC于F,若BD=AD,DE=DC.
①求證:△BED≌△ACD.
②求證:BF⊥AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.已知拋物線的頂點(diǎn)坐標(biāo)是(-2,3),且過點(diǎn)(-1,5),
(1)求此二次函數(shù)的解析式;
(2)根據(jù)(1)在直角坐標(biāo)系畫出函數(shù)的圖象;
(3)根據(jù)圖象回答:當(dāng)函數(shù)值y<0時(shí),x的取值范圍是什么?
(4)根據(jù)圖象回答:當(dāng)函數(shù)值y≥0時(shí),x的取值范圍是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.化簡(jiǎn)并求值:(x+2y)(x-2y)-(x-3y)2,其中x=-1,y=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.點(diǎn)(0,0)是( 。
A.拋物線y=x2的最低點(diǎn)
B.拋物線y=x2的最高點(diǎn)
C.拋物線y=-x2的最低點(diǎn)
D.拋物線y=x2和拋物線y=-x2的最低點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.把3a+3b-a-b+$\frac{2}{3}$a+$\frac{2}{3}$b-$\frac{1}{2}$a-$\frac{1}{2}$b合并同類項(xiàng)得$\frac{13}{6}$a+$\frac{13}{6}$b.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.分解因式:
(1)x3-6x2+9x;     
(2)4a3-16ab2;         
(3)m2(x-y)+n2(y-x)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.如圖.要判定AB∥CD,需要哪些條件?根據(jù)是什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案