分析 ①根據(jù)等腰直角三角形的性質(zhì)及△ABC∽△CDE的對應(yīng)邊成比例知$\frac{AC}{EC}$=$\frac{AB}{ED}$=$\frac{BC}{CD}$;然后由直角三角形中的正切函數(shù),得tan∠AEC=$\frac{AC}{EC}$,再由等量代換求得tan∠AEC=$\frac{BC}{CD}$;
②由三角形的面積公式、梯形的面積公式及不等式的基本性質(zhì)a2+b2≥2ab(a=b時取等號)解答;
③④通過作輔助線MN,構(gòu)建直角梯形的中位線,根據(jù)梯形的中位線定理及等腰直角三角形的判定定理解答.
解答 解:∵△ABC和△CDE均為等腰直角三角形,
∴AB=BC,CD=DE,
∴∠BAC=∠BCA=∠DCE=∠DEC=45°,
∴∠ACE=90°;
∵△ABC∽△CDE
∴$\frac{AC}{EC}$=$\frac{AB}{ED}$=$\frac{BC}{CD}$①∴tan∠AEC=$\frac{AC}{EC}$,
∴tan∠AEC=$\frac{BC}{CD}$;故本選項正確;
②∵S△ABC=$\frac{1}{2}$a2,S△CDE=$\frac{1}{2}$b2,S梯形ABDE=$\frac{1}{2}$(a+b)2,
∴S△ACE=S梯形ABDE-S△ABC-S△CDE=ab,
S△ABC+S△CDE=$\frac{1}{2}$(a2+b2)≥ab(a=b時取等號),
∴S△ABC+S△CDE≥S△ACE;故本選項正確;
④過點M作MN垂直于BD,垂足為N.
∵點M是AE的中點,
則MN為梯形中位線,
∴N為中點,
∴△BMD為等腰三角形,
∴BM=DM;故本選項正確;
③又MN=$\frac{1}{2}$(AB+ED)=$\frac{1}{2}$(BC+CD),
∴∠BMD=90°,
即BM⊥DM;故本選項正確.
故答案為:①②③④.
點評 本題考查了等腰直角三角形的判定與性質(zhì)、梯形的中位線定理、銳角三角函數(shù)的定義等知識點.注意準(zhǔn)確作出輔助線是解此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 3$\sqrt{\frac{2}{3}}$=$\sqrt{2}$ | B. | -3$\sqrt{2}$=$\sqrt{(-3)^{2}×2}$ | C. | $\sqrt{(-2)^{6}}$=(-2)3 | D. | $\sqrt{(a-b)^{4}}$=(a-b)2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 6a-5a=1 | B. | a2+a2=2a4 | C. | 3a2b-4b2a=-a2b | D. | 2a3+3a3=5a3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com