用配方法解方程數(shù)學(xué)公式,以下變形正確的是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
B
分析:先把常數(shù)項(xiàng)移到方程右邊,然后方程兩邊加上12即可.
解答:方程變形為:x2-2x=-
方程兩邊加上12,得x2-2x+12=-+12,
∴(x-1)2=
故選B.
點(diǎn)評(píng):本題考查了利用配方法解一元二次方程ax2+bx+c=0(a≠0):先把二次系數(shù)變?yōu)?,即方程兩邊除以a,然后把常數(shù)項(xiàng)移到方程右邊,再把方程兩邊加上一次項(xiàng)系數(shù)的一半,這樣把方程變形為:(x-2=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、我們知道:若x2=9,則x=3或x=-3.
因此,小南在解方程x2+2x-8=0時(shí),采用了以下的方法:
解:移項(xiàng),得x2+2x=8:
兩邊都加上l,得x2+2x+1=8+1,所以(x+1)2=9;
則x+1=3或x+1=-3:
所以x=2或x=-4.
小南的這種解方程方法,在數(shù)學(xué)上稱之為配方法.請(qǐng)用配方法解方程x2-4x-5=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用配方法解方程x2-2x+
1
9
=0
,以下變形正確的是( 。
A、(x-1)2=
1
9
B、(x-1)2=
8
9
C、(x-2)2=
8
9
D、(x-
1
3
)2=2x

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

認(rèn)真閱讀以下材料,并解答問(wèn)題:
(1)配方:利用完全平方公式,把二次三項(xiàng)式寫成(a-k)2+h的形式.
例:x2-2x=x2-2•1•x+12-12=(x-1)2-1
(2)利用配方法解方程ax2+bx+c=0(a≠0)
例:解方程x2-2x-3=0
x2-2x=3
x2-2•1•x+12=3+12
(x-1)2=4
x-1=±2
∴x1=3,x2=-1
問(wèn)題:(1)把多項(xiàng)式直接寫成(a-k)2+h的形式:x2-6x-3=
(x-3)2-12
(x-3)2-12

(2)用配方法解方程:x2+6x+8=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:北京期末題 題型:單選題

用配方法解方程,以下變形正確的是
[     ]
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案