【題目】如圖,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE=10.求CE的長度.

【答案】CE的長為4或6.

【解析】

BDA的垂線交DA的延長線于M,M為垂足,延長DMG,使MG=CE,連接BG.求證△BEC≌△BMG,△ABE≌△ABG,設(shè)CE=x,在直角△ADE中,根據(jù)AE2=AD2+DE2x的值,可以求CE的長度.

過B作DA的垂線交DA的延長線于M,M為垂足,

延長DM到G,使MG=CE,連接BG,

易知四邊形BCDM是正方形,

則△BEC與△BGM中,

,

∴△BEC≌△BMG(SAS),

∴∠MBG=∠CBE,BE=BG,

∵∠ABE=45°,

∴∠CBE+∠ABM=∠MBG+∠ABM=45°,

即∠ABE=∠ABG=45°,

在△ABE與△ABG中,

,

∴△ABE≌△ABG(SAS),

∴AG=AE=10,

設(shè)CE=x,則AM=10-x,

AD=12-(10-x)=2+x,DE=12-x,

在Rt△ADE中,AE2=AD2+DE2,

∴100=(x+2)2+(12-x)2

即x2-10x+24=0;

解得:x1=4,x2=6.

故CE的長為4或6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個(gè)安裝有進(jìn)出水管的30升容器,水管單位時(shí)間內(nèi)進(jìn)出的水量是一定的,設(shè)從

某時(shí)刻開始的4分鐘內(nèi)只進(jìn)水不出水,在隨后的8分鐘內(nèi)既進(jìn)水又出水,得到水量y(升)

與時(shí)間x(分)之間的函數(shù)關(guān)系如圖所示.根據(jù)圖象信息給出下列說法:

①每分鐘進(jìn)水5升;②當(dāng)4≤x≤12時(shí),容器中水量在減少;

③若12分鐘后只放水,不進(jìn)水,還要8分鐘可以把水放完;

④若從一開始進(jìn)出水管同時(shí)打開需要24分鐘可以將容器灌滿.

以上說法中正確的有(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校計(jì)劃在如圖所示的空地 ABCD 上種植草皮,經(jīng)測(cè)量∠ADC90°,CD 6m ,AD 8m AB26m , BC 24m .

1)求出空地 ABCD 的面積;

2)若每種植 1 平方米草皮需要 200 元,問總共需投入多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為4的⊙O中,CD為直徑,AB⊥CD且過半徑OD的中點(diǎn),點(diǎn)E為⊙O上一動(dòng)點(diǎn),CF⊥AE于點(diǎn)F.當(dāng)點(diǎn)E從點(diǎn)B出發(fā)順時(shí)針運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)F所經(jīng)過的路徑長為( )

A. π B. π C. π D. π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分7分) 已知:如圖,A是⊙O上一點(diǎn),半徑OC的延長線與過點(diǎn)A的直線交于B點(diǎn),OC=BC,AC=OB

(1)求證:AB是⊙O的切線;

(2)若∠ACD=45°,OC=2,求弦CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

從上表可知,下列說法正確的個(gè)數(shù)是( )

①拋物線與x軸的一個(gè)交點(diǎn)為(﹣2,0);②拋物線與y軸的交點(diǎn)為(0,6);

③拋物線的對(duì)稱軸是x=1;④在對(duì)稱軸左側(cè)yx增大而增大.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,abc,b2-4ac,2a+b,a+b+c這四個(gè)式子中,值為正數(shù)的有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線ABx軸交于點(diǎn)Am,0),與y軸交于點(diǎn)B0,n),且m,n滿足:(m+n2+|n6|0

1)求:①mn的值;②SABO的值;

2DOA延長線上一動(dòng)點(diǎn),以BD為直角邊作等腰直角BDE,連接EA,求直線EAy軸交點(diǎn)F的坐標(biāo).

3)如圖2,點(diǎn)Ey軸正半軸上一點(diǎn),且∠OAE30°AF平分∠OAE,點(diǎn)M是射線AF上一動(dòng)點(diǎn),點(diǎn)N是線段OA上一動(dòng)點(diǎn),試求OM+MN的最小值(圖1與圖2中點(diǎn)A的坐標(biāo)相同).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖的實(shí)線部分是由 RtABC 經(jīng)過兩次折疊得到的,首先將 RtABC 沿 BD 折疊,使點(diǎn) C落在斜邊上的點(diǎn) C′處,再沿 DE 折疊,使點(diǎn) A 落在 DC′的延長線上的點(diǎn) A′處.若圖中∠C=90°,DE=3cmBD=4cm,則 DC′的長為_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案