如圖,線段OP的一個端點O在直線a上,以OP為一邊畫等腰三角形,并且使另一個頂點在直線a上,這樣的等腰三角形能有________個.

4
分析:當O為等腰三角形的兩條腰的交點時,以O為圓心,OP為半徑畫弧,交直線a于兩點;當P為等腰三角形的兩條腰的交點時,以P為圓心,OP為半徑畫弧,交直線a于一點;當所求的第三點為等腰三角形的兩條腰的交點時,可作OP的垂直平分線,與直線a交于一點,那么可作出等腰三角形共4個.
解答:解:
△AOP,△BOP,△COP,△DOP就是所求的三角形.
點評:本題考查了等腰三角形的性質(zhì);等腰三角形有2條邊相等,注意可選不同的頂點為等腰三角形的兩條腰的交點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,線段OP的一個端點O在直線a上,以OP為一邊畫等腰三角形,并且使另一個頂點在直線a上,這樣的等腰三角形能有
4
4
個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平面直角坐標系中,直線l經(jīng)過A(0,4)和B(-3,0)兩點,⊙O的半徑為2,點P為直線l上的一個動點,過P作⊙O的一條切線,切點為Q,當切線長PQ最小時,線段OP的長為
12
5
12
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正方形ARCD的邊長為2,點M是BC的中點,P是線段MC上的一個動點(不運動到M,C),以AB為直徑作⊙O,過點P的切線交AD于點F,切點為E.
(1)求四邊形CDFP的周長.
(2)連接OF,OP,求證:OF⊥OP.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年江蘇省蘇州中學高中入學綜合調(diào)研數(shù)學試卷(解析版) 題型:填空題

如圖,線段OP的一個端點O在直線a上,以OP為一邊畫等腰三角形,并且使另一個頂點在直線a上,這樣的等腰三角形能有    個.

查看答案和解析>>

同步練習冊答案