19.如圖,△ABC為⊙O的內(nèi)接三角形,∠AOB=100°,則∠ACB的度數(shù)為( 。
A.100°B.130°C.150°D.160°

分析 首先在優(yōu)弧AB上取點(diǎn)D,連接AD,BD,然后由圓周角定理,求得∠D的度數(shù),又由圓的內(nèi)接四邊形的性質(zhì),求得∠ACB的度數(shù).

解答 解:在優(yōu)弧AB上取點(diǎn)D,連接AD,BD,
∵∠AOB=100°,
∴∠D=$\frac{1}{2}$∠AOB=50°,
∴∠ACB=180°-∠D=130°.
故選B.

點(diǎn)評(píng) 此題考查了圓周角定理以及圓的內(nèi)接四邊形的性質(zhì).注意準(zhǔn)確作出輔助線是解此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知$\sqrt{2x+6}$和|y-$\sqrt{2}$|互為相反數(shù),則x=-3,y=$\sqrt{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

10.計(jì)算:
$\root{3}{-8}$=-2,
分解因式:9x2-6x+1=(3x-1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

7.由若干個(gè)相同的小立方體搭成的一個(gè)幾何體的主視圖和俯視圖如圖所示,俯視圖的方格中的字母和數(shù)字表示該位置上小立方體的個(gè)數(shù),求x=1或2,y=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.(1)求x的值:9x2-4=0
(2)計(jì)算:$|{-4}|+{({\sqrt{2}+1})^0}-\sqrt{12}$
(3)已知:(x+5)3=-9,求x       
(4)計(jì)算:$\sqrt{3{a^2}}÷\sqrt{\frac{a}{2}}×\frac{1}{2}\sqrt{\frac{2a}{3}}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,某數(shù)學(xué)活動(dòng)小組要測(cè)量樓AB的高度,樓AB在太陽(yáng)光的照射下在水平面的影長(zhǎng)BC為6米,在斜坡CE的影長(zhǎng)CD為13米,身高1.5米的小紅在水平面上的影長(zhǎng)為1.35米,斜坡CE的坡度為1:2.4,求樓AB的高度.(坡度為鉛直高度與水平寬度的比)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖所示,某古代文物被探明埋于地下的A處,由于點(diǎn)A上方有一些管道,考古人員不能垂直向下挖掘,他們被允許從B處或C處挖掘,從B處挖掘時(shí),最短路線BA與地面所成的銳角是56°,從C處挖掘時(shí),最短路線CA與地面所成的銳角是30°,且BC=20m,若考古人員最終從B處挖掘,求挖掘的最短距離.(參考數(shù)據(jù):sin56°=0.83,tan56°≈1.48,$\sqrt{3}$≈1.73,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖,Rt△ABC中,∠ACB=90°,AC=5,BC=12,AB的中垂線與BC交于點(diǎn)E,則BE的長(zhǎng)等于( 。
A.$\frac{12}{5}$B.$\frac{13}{5}$C.$\frac{169}{24}$D.$\frac{60}{13}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖,正方形ABCD的邊長(zhǎng)為3,AE=2BE,P是AC上一動(dòng)點(diǎn),則PB+PE的最小值為$\sqrt{13}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案