已知點C為線段AB上一點, 分別以AC、BC為邊在線段AB同側作△ACD

和△BCE, 且CA=CD, CB=CE, ∠ACD=∠BCE, 直線AE與BD交于點F.

       

         圖1                      圖2                       圖3

 (1)如圖1,求證:△ACE≌△DCB。

   (2)如圖1, 若∠ACD=60°, 則∠AFB=      ;

圖2, 若∠ACD=90°, 則∠AFB=      ;

(3)如圖3, 若∠ACD=β, 則∠AFB=       (用含β的式子表示)

并說明理由。

解:(1)點B(3,-)----------------------------2分

。2)O′(-,0)   A′(0,-

B′(2,-) C′(,0)-------------------6分

 (3)S=

   。-------------------8分

   。6 -------------------9分

∴△ACE≌△DCB(SAS)

         ∴∠CDB=∠CAE------------------10分

     ∵CA=CD

∴∠CAD=∠CDA

     ∵∠AFB=∠CDB+∠CDA+∠DAF

∴∠AFB=∠CAE+∠CDA+∠DAF=∠CDA+∠CAD ------------------11分

         ∵∠DAC+∠CDA+∠ACD=180°

         ∴∠CDA+∠CAD=180°-∠ACD=180º-β

         即∠AFB=180º-β------------------12分

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知點C為線段AB上一點,分別以AC、BC為邊在線段AB同側作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直線AE與BD交于點F,
(1)如圖1,若∠ACD=60°,則∠AFB=
 
;如圖2,若∠ACD=90°,則∠AFB=
 
;如圖3,若∠ACD=120°,則∠AFB=
 

(2)如圖4,若∠ACD=α,則∠AFB=
 
(用含α的式子表示);
(3)將圖4中的△ACD繞點C順時針旋轉(zhuǎn)任意角度(交點F至少在BD、AE中的一條線段上),變成如圖5所示的情形,若∠ACD=α,則∠AFB與α的有何數(shù)量關系?并給予證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知點C為線段AB上一點,分別以AC、BC為邊在線段AB的同側作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直線AE與BD交于點F.

(1)如圖1,若∠ACD=60°,則∠AFB=則
120°
120°
,如圖2,若∠ACD=90°,則∠AFB=
90°
90°
,如圖3,若∠ACD=α,則∠AFB=
180°-α
180°-α
(用含α的式子表示);
(2)設∠ACD=α,將圖3中的△ACD繞點C順時針旋轉(zhuǎn)任意角度(交點F至少在BD、AE中的一條線段上),如圖4,試探究∠AFB與α的數(shù)量關系,并予以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖(甲)所示,已知點C為線段AB上一點,四邊形ACMF和四邊形BCNE是兩個正方形:如圖(乙),若把甲圖中的兩個正方形換成△ACM、△BCN都是等邊三角形.連結DE.
(1)試探究圖(甲)中AN與BM的數(shù)量關系與位置關系,并說明理由.
(2)求證:AD=ME;(圖乙)
(3)求證:DE∥AB; (圖乙)
(4)求證:∠BON=60°.(圖乙)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,已知點C為線段AB上一點,CB>CA,分別以線段AC、BC為邊在線段AB同側作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直線AE與BD交于點F.
(1)說明AE=DB的理由.
(2)如果∠ACD=60°,求∠AFB的度數(shù).
(3)將圖1中的△ACD繞著點C順時針旋轉(zhuǎn)某個角度,到如圖2的位置,如果∠ACD=α,那么∠AFB與α有何數(shù)量關系(用含α的代數(shù)式表示)?試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①:已知點C為線段AB上一點,且D、E分別是線段AB、BC的中點,
(1)若AC=5cm,BC=4cm,試求線段DE的長度.
(2)如果(1)中的BC=a,其他條件不變,試求DE的長度.
(3)根據(jù)(1)(2)的計算結果,有關線段DE的長度你能得出什么結論?
(4)如圖②,已知∠AOC=α,∠BOC=β,且OD、OE分別為∠AOB、∠BOC的角平分線,請直接寫出∠DOE度數(shù)的表達式.

查看答案和解析>>

同步練習冊答案