【題目】如圖所示,正方形ABCD的面積為12,△ABE是等邊三角形,點E在正方形內(nèi),在對角線AC上找到一點P,使PD+PE的和最小,則這個和的最小值是(  。

A. B. C. 3 D.

【答案】A

【解析】

由于點BD關于AC對稱,所以連接BDAC的交點即為P點.此時PD+PE=BE最小,BE是等邊△ABE的邊BE=AB,由正方形ABCD的面積為12,可求出AB的長從而得出結果

BEAC交于點FP′),連接BD

∵點BD關于AC對稱,PD=PBPD+PE=PB+PE=BE最小

PACBE的交點上時,PD+PE最小,BE的長度

∵正方形ABCD的面積為12,AB=2

又∵△ABE是等邊三角形BE=AB=2

故所求最小值為2

故選A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某?萍紕(chuàng)新興趣小組用他們設計的機器人,在平坦的操場上進行走展示.輸入指令后,機器人從出發(fā)點A先向東走10米,又向南走40米,再向西走20米,又向南走40米,再向東走70米到達終止點B.求終止點B與原出發(fā)點A的距離AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是等腰三角形,,

尺規(guī)作圖:作的角平分線BD,交AC于點保留作圖痕跡,不寫作法;

判斷是否為等腰三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了測出旗桿AB的高度,在旗桿前的平地上選擇一點C,測得旗桿頂部A的仰角為45°,在C、B之間選擇一點D(C、D、B三點共線),測得旗桿頂部A的仰角為75°,且CD=8m

(1)求點D到CA的距離;
(2)求旗桿AB的高.
(注:結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在三角形ABC中,∠ACB=90°,∠B=50°,將此三角形繞點C沿順時針方向旋轉后得到三角形A′B′C,若點B′恰好落在線段AB上,AC、A′B′交于點O,則∠COA′的度數(shù)是(

A.50°
B.60°
C.70°
D.80°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,Rt△ABC中,∠C=90°,BC=6,AC=8.動點P從點A出發(fā)沿A—B—C的方向以每秒2個單位的速度運動.P的運動時間為t(秒).

(1)請直接用含t的代數(shù)式表示當點PAB上時,BP= ;②當點PBC上時,BP= ;

(2)求△BPC為等腰三角形的t.

(備用圖)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平行四邊形ABCD的兩個頂點A、C在反比例函數(shù)y= (k≠0)圖象上,點B、D在x軸上,且B、D兩點關于原點對稱,AD交y軸于P點

(1)已知點A的坐標是(2,3),求k的值及C點的坐標;
(2)若△APO的面積為2,求點D到直線AC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,延長AB至E,延長CD至F,BE=DF,連接EF,與BC、AD分別相交于P、Q兩點.

(1)求證:CP=AQ;
(2)若BP=1,PQ=2 ,∠AEF=45°,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】
(1)計算:|﹣ |﹣2cos45°﹣( 1+(tan80°﹣ 0+
(2)化簡:( ﹣2)÷ ﹣2x,再代入一個合適的x求值.

查看答案和解析>>

同步練習冊答案