如圖.已知二次函數(shù)y=-x2+bx+3的圖象與x軸的一個交點為A(4,0),與y軸交于點B.
(1)求此二次函數(shù)關系式和點B的坐標;
(2)在x軸的正半軸上是否存在點P.使得△PAB是以AB為底邊的等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由.

【答案】分析:(1)把點A的坐標代入二次函數(shù),求出b的值,確定二次函數(shù)關系式,把x=0代入二次函數(shù)求出點B的坐標.
(2)分情況討論,①當BP=AP時,②當AB=AP時,分別求出即可得出答案.
解答:解:(1)把點A(4,0)代入二次函數(shù)有:
0=-16+4b+3
得:b=
所以二次函數(shù)的關系式為:y=-x2+x+3.
當x=0時,y=3
∴點B的坐標為(0,3).

(2)如圖:
作AB的垂直平分線交x軸于點P,連接BP,
則:BP=AP
設BP=AP=x,則OP=4-x,
在直角△OBP中,BP2=OB2+OP2
即:x2=32+(4-x)2
解得:x=
∴OP=4-=
所以點P的坐標為:(,0)
綜上可得點P的坐標為(,0).
點評:本題考查的是二次函數(shù)的綜合題,(1)根據(jù)二次函數(shù)的概念求出拋物線的解析式及點B的坐標.(2)根據(jù)等腰三角形的性質,利用勾股定理求出點P的坐標.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知二次函數(shù)圖象的頂點坐標為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點,其中A點坐標為(
5
2
13
4
),B點在y軸上,直線與x軸的交點為F,P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于E點.
(1)求k,m的值及這個二次函數(shù)的解析式;
(2)設線段PE的長為h,點P的橫坐標為x,求h與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個二次函數(shù)圖象對稱軸的交點,在線段AB上是否存在點P,使得以點P、E、D為頂點的精英家教網(wǎng)三角形與△BOF相似?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+3(a≠0)的圖象與x軸交于點A(-1,0)和點B(3,0)兩點(點A在點B的左邊),與y軸交于點C.
(1)求此二次函數(shù)的解析式,并寫出它的對稱軸;
(2)若直線l:y=kx(k>0)與線段BC交于點D(不與點B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點的三角形與△BAC相似?若存在,求出點D的坐標;若不存在,請說明理由;
(3)若直線l′:y=m與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)圖象的頂點坐標為C(1,0),直線y=x+b與該二次函數(shù)的圖象交于A、B兩點,其中點A的坐標為(3,4),點B在y軸上.點P為線段AB上的一個動點(點P與A、B不重合),過點P作x軸的垂線與該二次函數(shù)的圖象交于點E.
(1)求b的值及這個二次函數(shù)的關系式;
(2)設線段PE的長為h,點P的橫坐標為x,求h與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)若點D為直線AB與該二次函數(shù)的圖象對稱軸的交點,則四邊形DCEP能否構成平行四邊形?如果能,請求出此時P點的坐標;如果不能,請說明理由.
(4)以PE為直徑的圓能否與y軸相切?如果能,請求出點P的坐標;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)y=ax2-4x+c的圖象與坐標軸交于點A(-1,0)和點C(0,-5).
(1)求該二次函數(shù)的解析式和它與x軸的另一個交點B的坐標.
(2)在上面所求二次函數(shù)的對稱軸上存在一點P(2,-2),連接OP,找出x軸上所有點M的坐標,使得△OPM是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•衡水一模)如圖,已知二次函數(shù)y=-
12
x2+bx+c
的圖象經(jīng)過A(2,0)、B(0,-6)兩點.
(1)求這個二次函數(shù)的解析式;
(2)設該二次函數(shù)圖象的對稱軸與x軸交于點C,連接BA、BC,求△ABC的面積;
(3)若拋物線的頂點為D,在y軸上是否存在一點P,使得△PAD的周長最小?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案