【題目】如圖,AB、C三點在一條直線上,根據(jù)圖形填空:

1AC   +   +   ;

2ABAC   ;

3DB+BC   AD

4)若AC8cmD是線段AC中點,B是線段DC中點,求線段AB的長.

【答案】1ADDBBC;(2BC;(3AC;(4)6cm

【解析】

1)根據(jù)圖形直觀的得到線段之間的關(guān)系;

2)根據(jù)圖形直觀的得到線段之間的關(guān)系;

3)根據(jù)圖形直觀的得到各線段之間的關(guān)系;

4ADCD的長度相等并且都等于AC的一半,DB的長度為CD長度的一半即為AC長度的四分之一.AB的長度等于AD加上DB,從而可求出AB的長度.

1ACAD+DB+BC

故答案為:AD,DBBC;

2ABACBC

故答案為:BC;

3DB+BCDC=ACAD

故答案為:AC

4)∵DAC的中點,AC8時,ADDC4

BDC的中點,

DB2

ABAD+DB

4+2,

6cm).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 6個相同的小正方體擺成如圖的幾何體.

1)畫出該幾何體的主視圖、左視圖、俯視圖;

2)如果每個小正方體棱長為,則該幾何體的表面積是

3)如果在這個幾何體上再添加一些相同的小正方體,并并保持左視圖和俯視圖不變,那么最多可以再 添加 個小正方體.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題.

1

2

32002-202×198

4

5[2x+y2yy+4x)﹣8xy]÷(﹣2x).其中x=-2,y=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點C在線段BE上,分別以BCCE為邊作等邊三角形ABC和等邊三角形DCE,連接AECD相交于點N,連接BDAC相交于點M,連接OC、MN,則以下結(jié)論①AE=BD;②ACN≌△BCM;③BOE=120°;④MNC是等邊三角形;⑤OC平分BOE;正確的個數(shù)是( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】嘉嘉參加機器人設(shè)計活動,需操控機器人在5×5的方格棋盤上從A點行走至B點,且每個小方格皆為正方形,主辦單位規(guī)定了三條行走路徑R1,R2,R3,其行經(jīng)位置如圖與表所示:

路徑

編號

圖例

行徑位置

第一條路徑

R1

_

A→C→D→B

第二條路徑

R2

A→E→D→F→B

第三條路徑

R3

A→G→B

已知A、B、C、D、E、F、G七點皆落在格線的交點上,且兩點之間的路徑皆為直線,在無法使用任何工具測量的條件下,請判斷R1、R2、R3這三條路徑中,最長與最短的路徑分別為何?請寫出你的答案,并完整說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知OC是∠AOB內(nèi)部的一條射線,M、N分別為OA、OB上的點,線段OM、ON同時開始旋轉(zhuǎn),線段OM30度/秒繞點O逆時針旋轉(zhuǎn),線段ON10度/秒的速度繞點O順時針旋轉(zhuǎn),當(dāng)OM旋轉(zhuǎn)到與OB重合時,線段OMON都停止旋轉(zhuǎn).設(shè)OM的旋轉(zhuǎn)時間為t秒.

1)若∠AOB140°,當(dāng)t2秒時,∠MON   ,當(dāng)t4秒時,∠MON   ;

2)如圖②,若∠AOB140°,OC是∠AOB的平分線,求t為何值時,兩個角∠NOB與∠COM中的其中一個角是另一個角的2倍.

3)如圖③,若OMON分別在∠AOC、∠COB內(nèi)部旋轉(zhuǎn)時,總有∠COM3CON,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點的坐標(biāo)分別為:A-1,2),B-2,-1),C20.

1)作圖:將△ABC先向右平移4個單位,再向上平移3個單位,則得到△A1B1C1,作出△A1B1C1;(不要求寫作法)

2)寫出下列點的坐標(biāo):A1______;B1______C1______.

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形網(wǎng)格中以點A為圓心,AB為半徑作圓A交網(wǎng)格于點C(如圖(1)),過點C作圓的切線交網(wǎng)格于點D,以點A為圓心,AD為半徑作圓交網(wǎng)格于點E(如圖(2)).

問題:

(1)求∠ABC的度數(shù);

(2)求證:△AEB≌△ADC;

(3)△AEB可以看作是由△ADC經(jīng)過怎樣的變換得到的?并判斷△AED的形狀(不用說明理由).

(4)如圖(3),已知直線a,b,c,且a∥b,b∥c,在圖中用直尺、三角板、圓規(guī)畫等邊三角形A′B′C′使三個頂點A′,B′,C′,分別在直線a,b,c上.要求寫出簡要的畫圖過程,不需要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】青少年視力水平下降已引起全社會的廣泛關(guān)注,為了解某市初中畢業(yè)年級5 000名學(xué)生的視力情況,我們從中抽取了一部分學(xué)生的視力作為樣本進行數(shù)據(jù)處理,得到如下的不完整的頻數(shù)分布表和頻數(shù)分布直方圖:

請根據(jù)以上圖表信息回答下列問題:

(1)在頻數(shù)分布表中,a=________,b=________

(2)補全條形統(tǒng)計圖;

(3)若視力在4.6以上(含4.6)均屬正常,根據(jù)上述信息估計全區(qū)初中畢業(yè)生中視力正常的學(xué)生有多少?

查看答案和解析>>

同步練習(xí)冊答案