精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在直線l上擺放著三個三角形:△ABC、△HFG、△DCE,已知BC=CE,F、G分別是BC、CE的中點,FM∥AC∥HG∥DE,GN∥DC∥HF∥AB.設圖中三個四邊形的面積依次是S1,S2,S3,若S1+S3=20,則S1=_____,S2=_____

【答案】2 6.

【解析】

根據題意可以證明S2S1兩個平行四邊形的高相等,長是S13,S3S2的長相等,高是S3,這樣就可以把S1S3S2來表示,從而計算出S2的值

根據正三角形的性質,ABC=HFG=DCE=60°,ABHFDCGN,ACFH交于PCDHG交于Q,∴△PFCQCG和△NGE是正三角形

F、G分別是BC、CE的中點,MF=AC=BCPF=AB=BC

又∵BC=CE=CG=GE,CP=MF,CQ=BC=3PF,QG=GC=CQ=AB=3CPS1=S2,S3=3S2

S1+S3=20,S2+3S2=20,S2=6,S1=2

故答案為:2;6

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】(題文)如圖,拋物線與x軸交于A、B兩點,與y軸交于點C,其對稱軸交拋物線于點D,交x軸于點E,已知OB=OC=6.

(1)求拋物線的解析式及點D的坐標;

(2)連接BD,F為拋物線上一動點,當∠FAB=∠EDB時,求點F的坐標;

(3)平行于x軸的直線交拋物線于M、N兩點,以線段MN為對角線作菱形MPNQ,當點P在x軸上,且PQ=MN時,求菱形對角線MN的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,Rt△ABC中,∠ABC=90°,ABBC,直線l1、l2l3分別通過A、BC三點,且l1l2l3.若l1l2的距離為5,l2l3的距離為7,則Rt△ABC的面積為___________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線經過點A,0),B,0),且與y軸相交于點C

1求這條拋物線的表達式

2)求∠ACB的度數;

3設點D是所求拋物線第一象限上一點,且在對稱軸的右側,點E在線段AC上,且DEAC,當DCEAOC相似時,求點D的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“中華人民共和國道路交通管理條例”規(guī)定:小汽車在城街路上行駛速度不得超過km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀正前方m處,過了2s后,測得小汽車與車速檢測儀間距離為m,這輛小汽車超速了嗎?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若將一副三角板按如圖所示的方式放置,則下列結論:①;②如果,則有;③如果,則有;④如果,必有;其中正確的有( )

A.①②③B.①②④C.②③④D.①②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,有長為22米的籬笆,一面利用墻(墻的最大可用長度為14米),圍成中間隔有一道籬笆的長方形花圃,有以下兩種圍法.

(1)如圖1,設花圃的寬AB為x米,面積為y米2,求y與x之間的含函數表達式,并確定x的取值范圍;

(2)如圖2,為了方便出入,在建造籬笆花圃時,在BC上用其他材料造了寬為1米的兩個小門,設花圃的寬AB為a米,面積為S米2,求S與a之間的函數表達式及S的最大值?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,過點C的直線MNAB,DAB邊上一點,過點DDEBC,交直線MNE,垂足為F,連接CD,BE.

(1)求證:CEAD

(2)當DAB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;

(3)若DAB中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某日王老師佩戴運動手環(huán)進行快走鍛煉,兩次鍛煉后數據如表.與第一次鍛煉相比,王老師第二次鍛煉步數增長的百分率是其平均步長減少的百分率的3倍.設王老師第二次鍛煉時平均步長減少的百分率為

項目

第一次鍛煉

第二次鍛煉

步數()

10000

____________

平均步長(/)

0.6

____________

距離()

6000

7020

注:步數×平均步長=距離.

(1)根據題意完成表格填空;

(2)x;

(3)王老師發(fā)現好友中步數排名第一為24000步,因此在兩次鍛煉結束后又走了500米,使得總步數恰好為24000步,求王老師這500米的平均步長.

查看答案和解析>>

同步練習冊答案