【題目】如圖,在△ABC中,BC的垂直平分線交AC于點E,交BC于點D,且AD=AB,連接BE交AD于點F,下列結(jié)論:( 。
①∠EBC=∠C;②△EAF∽△EBA;③BF=3EF;④∠DEF=∠DAE,其中結(jié)論正確的個數(shù)有
A. 1個 B. 2個 C. 3個 D. 4個
【答案】C
【解析】分析: 要解答本題,首先由中垂線的性質(zhì)可以求得BE=CE,利用外角與內(nèi)角的關系可以得出∠CAD=∠ABE,通過作輔助線利用等腰三角形的性質(zhì)和三角形全等可以得出EF=FH=HB,根據(jù)等高的兩三角形的面積關系求出AF=DF,利用角的關系代替證明∠5≠∠4,從而得出△DEF與△DAE不相似.根據(jù)以上的分析可以得出正確的選項答案.
詳解: ∵BC的垂直平分線交AC于點E,交BC于點D,
∴CE=BE,
∴∠EBC=∠C,故①正確;
∵AD=AB,
∴∠8=∠ABC=∠6+∠7,
∵∠8=∠C+∠4,
∴∠C+∠4=∠6+∠7,
∴∠4=∠6,
∵∠AEF=∠AEB,
∴△EAF∽△EBA,故②正確;
作AG⊥BD于點G,交BE于點H,
∵AD=AB,DE⊥BC,
∴∠2=∠3,DG=BG=BD,DE∥AG,
∴△CDE∽△CGA,△BGH∽△BDE,DE=AH,∠EDA=∠3,∠5=∠1,
∴在△DEF與△AHF中,
∠EDA=∠3
∠5=∠1
DE=AH,
∴△DEF≌△AHF(AAS),
∴AF=DF,EF=HF=EH,且EH=BH,
∴EF:BF=1:3,故③正確;
∵∠1=∠2+∠6,且∠4=∠6,∠2=∠3,
∴∠5=∠3+∠4,
∴∠5≠∠4,故④錯誤,
綜上所述:正確的答案有3個,
故選:C.
點睛: 本題考查了中垂線的判定及性質(zhì),等腰三角形的性質(zhì),三角形全等的判定及性質(zhì),三角形的中位線及相似三角形的判定及性質(zhì)和等積變換等知識.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線與反比例函數(shù)的圖象交于點A(2,);將直線向下平移后與反比例函數(shù)的圖象交于點B,且△AOB的面積為3.
(1)求的值;
(2)求平移后所得直線的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當點D在線段BC上時,
①BC與CF的位置關系為: .
②BC,CD,CF之間的數(shù)量關系為: ;(將結(jié)論直接寫在橫線上)
(2)數(shù)學思考
如圖2,當點D在線段CB的延長線上時,結(jié)論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.
(3)拓展延伸
如圖3,當點D在線段BC的延長線上時,延長BA交CF于點G,連接GE.若已知AB=2,CD=BC,請求出GE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠A=30°,AC=4,M是AB邊上一動點,N是AC邊上的一動點,則MN+MC的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小賢為了體驗四邊形的不穩(wěn)定性,將四根木條用釘子釘成一個矩形框架ABCD,B與D兩點之間用一根橡皮筋拉直固定,然后向右扭動框架,觀察所得四邊形的變化,下列判斷錯誤的是( )
A. 四邊形ABCD由矩形變?yōu)槠叫兴倪呅?/span> B. BD的長度增大
C. 四邊形ABCD的面積不變 D. 四邊形ABCD的周長不變
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近幾年,全社會對空氣污染問題越來越重視,空氣凈化器的銷量也在逐年增加.某商場從廠家購進了A,B兩種型號的空氣凈化器,兩種凈化器的銷售相關信息見下表:
A型銷售數(shù)量(臺) | B型銷售數(shù)量(臺) | 總利潤(元) |
5 | 10 | 2 000 |
10 | 5 | 2 500 |
(1)每臺A型空氣凈化器和B型空氣凈化器的銷售利潤分別是多少?
(2)該公司計劃一次購進兩種型號的空氣凈化器共100臺,其中B型空氣凈化器的進貨量不少于A型空氣凈化器的2倍,為使該公司銷售完這100臺空氣凈化器后的總利潤最大,請你設計相應的進貨方案;
(3)已知A型空氣凈化器的凈化能力為300 m3/小時,B型空氣凈化器的凈化能力為200 m3/小時.某長方體室內(nèi)活動場地的總面積為200 m2,室內(nèi)墻高3 m.該場地負責人計劃購買5臺空氣凈化器每天花費30分鐘將室內(nèi)空氣凈化一新,如不考慮空氣對流等因素,至少要購買A型空氣凈化器多少臺?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】糧庫6天內(nèi)發(fā)生糧食進、出庫的噸數(shù)如下(“”表示進庫,“”表示出庫):,,,,,.
(1)經(jīng)過這6天,庫里的糧食是增多還是減少了?增加(減少)了多少?
(2)經(jīng)過這6天,管理員結(jié)算時發(fā)現(xiàn)庫里還存480噸糧,那么6天前庫里存糧多少噸?
(3)如果進出的裝卸費都是每噸5元,那么這6天要付多少裝卸費?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+與直線AB交于點A(﹣1,0),B(4,),點D是拋物線A、B兩點間部分上的一個動點(不與點A、B重合),直線CD與y軸平行,交直線AB于點C,連接AD,BD.
(1)求拋物線的表達式;
(2)設點D的橫坐標為m,△ADB的面積為S,求S關于m的函數(shù)關系式,并求出當S取最大值時的點C的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com