【題目】甲、乙兩人在一條筆直的道路上相向而行,甲騎自行車從A地到B地,乙駕車從B地到A地,他們分別以不同的速度勻速行駛,已知甲先出發(fā)6分鐘后,乙才出發(fā),在整個(gè)過(guò)程中,甲、乙兩人的距離y(千米)與甲出發(fā)的時(shí)間x(分)之間的關(guān)系如圖所示,乙從B地到A地需要( )分鐘

A.12B.14C.18D.20

【答案】A

【解析】

根據(jù)題意,得到路程和甲的速度,然后根據(jù)相遇問(wèn)題,設(shè)乙的速度為x,列出方程求解,然后即可求出乙需要的時(shí)間.

解:由縱坐標(biāo)看出甲先行駛了1千米,由橫坐標(biāo)看出甲行駛1千米用了6分鐘,

∴甲的速度是:1÷6=千米/分鐘,

由縱坐標(biāo)看出AB兩地的距離是16千米,

設(shè)乙的速度是x千米/分鐘,由題意,得:

10x+16×=16,

解得:x=,

∴乙從B地到A地需要的時(shí)間為:(分鐘);

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】8分如圖,AC是ABCD的一條對(duì)角線,過(guò)AC中點(diǎn)O的直線分別交AD,BC于點(diǎn)E,F(xiàn)

1求證:AOE≌△COF;

2當(dāng)EF與AC滿足什么條件時(shí),四邊形AFCE是菱形?并說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C為線段AB上一點(diǎn),分別以AB、AC、CB為底作頂角為120°的等腰三角形,頂角頂點(diǎn)分別為D、E、F(點(diǎn)E、FAB的同側(cè),點(diǎn)D在另一側(cè))

(1)如圖1,若點(diǎn)CAB的中點(diǎn),則∠AED   ;

(2)如圖2,若點(diǎn)C不是AB的中點(diǎn)

①求證:DEF為等邊三角形;

②連接CD,若∠ADC=90°,AB=3,請(qǐng)直接寫出EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,、的角平分線相交于點(diǎn),①若,則__________,②若,,則___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象與軸交于點(diǎn)、,且,與軸的正半軸的交點(diǎn)在的下方.下列結(jié)論:①;②;③;④.其中正確結(jié)論的個(gè)數(shù)是( )個(gè).

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=x+2x軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線y=ax2+4ax+b經(jīng)過(guò)A、C兩點(diǎn),與x軸交于另一點(diǎn)B.

(1)求拋物線的解析式:

(2)點(diǎn)Q在拋物線上,且SAQC=SBQC,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

A. 隨機(jī)拋擲一枚均勻的硬幣,落地后反面一定朝上。

B. 1,2,34,5中隨機(jī)取一個(gè)數(shù),取得奇數(shù)的可能性較大。

C. 某彩票中獎(jiǎng)率為,說(shuō)明買100張彩票,有36張中獎(jiǎng)。

D. 打開(kāi)電視,中央一套正在播放新聞聯(lián)播。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為1,ACBD是對(duì)角線。將DCB繞著點(diǎn)D順時(shí)針旋轉(zhuǎn)45°得到DGHHGAB于點(diǎn)E,連接DEAC于點(diǎn)F,連接FG。則下列結(jié)論:①四邊形AEGF是菱形;②△AED≌△GED;③∠DFG=112.5°;④BC+FG=1.5.其中正確的結(jié)論是( )

A. ①②③④ B. ①②③ C. ①② D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,學(xué)校要用長(zhǎng)24米的籬笆圍成一個(gè)長(zhǎng)方形生物園ABCD,EFABCD內(nèi)用籬笆做成的豎直隔斷.為了節(jié)約材料,場(chǎng)地的一邊CD借助原有的一面墻,墻長(zhǎng)為12米,長(zhǎng)方形生物園ABCD的面積為45平方米,求長(zhǎng)方形場(chǎng)地的邊AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案