【題目】如圖,正方形ABCD的外接圓為⊙O,點(diǎn)P在劣弧 CD上(不與C點(diǎn)重合).

1)求∠BPC的度數(shù);

2)若⊙O的半徑為8,求正方形ABCD的邊長(zhǎng).

【答案】(1)45°;(2)8

【解析】試題分析:1)連接OB,OC,由正方形的性質(zhì)知, 是等腰直角三角形,根據(jù),由圓周角定理可以求出;
2過(guò)點(diǎn)OOEBC于點(diǎn)E由等腰直角三角形的性質(zhì)可知OE=BE,由垂徑定理可知BC=2BE,故可得出結(jié)論.

試題解析:1)連接OB,OC

∵四邊形ABCD為正方形,

∴∠BOC=90°,

∴∠P=BOC=45°;

2)過(guò)點(diǎn)OOEBC于點(diǎn)E,

OB=OC,∠BOC=90°,

∴∠OBE=45°,

OE=BE,

OE2+BE2=OB2

BE=,

BC=2BE=2×.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AC為對(duì)角線,EAB上一點(diǎn),過(guò)點(diǎn)E,與AC、DC分別交于點(diǎn)CG的中點(diǎn),連結(jié)DE、EH、DH、下列結(jié)論: ; ; ,則其中結(jié)論正確的有

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把下列各數(shù)填入相應(yīng)的集合內(nèi):

4.2 , 50% , 0 , , 2.122222…, 3.01001…,, ,

正數(shù)集合:{ };

分?jǐn)?shù)集合:{ }

負(fù)有理數(shù)集合:{ };

無(wú)理數(shù)集合:{ }.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,弦BC=9,∠BOC=50°,OE⊥AC,垂足為E.

(1)求OE的長(zhǎng).

(2)求劣弧AC的長(zhǎng)(結(jié)果精確到0.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在ABC 中,ABAC 邊的垂直平分線相交于點(diǎn) O,分別交 BC 邊于點(diǎn) MN,連接 AMAN

1)若AMN 的周長(zhǎng)為 6,求 BC 的長(zhǎng);

2)若∠MON=30°,求∠MAN 的度數(shù);

3)若∠MON=45°,BM=3,BC=12,求 MN 的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】423日是世界讀書(shū)日,學(xué)校開(kāi)展讓書(shū)香溢滿校園讀書(shū)活動(dòng),以提升青少年的閱讀興趣,九年級(jí)(1)班數(shù)學(xué)活動(dòng)小組對(duì)本年級(jí)600名學(xué)生每天閱讀時(shí)間進(jìn)行了統(tǒng)計(jì),根據(jù)所得數(shù)據(jù)繪制了兩幅不完整統(tǒng)計(jì)圖(每組包括最小值不包括最大值).九年級(jí)(1)班每天閱讀時(shí)間在0.5小時(shí)以內(nèi)的學(xué)生占全班人數(shù)的8%.根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:

1)九年級(jí)(1)班有    名學(xué)生;

2)補(bǔ)全直方圖;

3)除九年級(jí)(1)班外,九年級(jí)其他班級(jí)每天閱讀時(shí)間在11.5小時(shí)的學(xué)生有165人,請(qǐng)你補(bǔ)全扇形統(tǒng)計(jì)圖;

4)求該年級(jí)每天閱讀時(shí)間不少于1小時(shí)的學(xué)生有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知平行四邊形ABCD,點(diǎn)OAD中點(diǎn),點(diǎn)EBD上,連接EO并延長(zhǎng)交BC于點(diǎn)F,連接BEDF

(1)求證:四邊形BEDF是平行四邊形;

(2)AB=3AD=6,∠BAD=135°,當(dāng)四邊形BEDF為菱形時(shí),求AE的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在△ABC中,ADBC邊上的中線,以AB為直徑的⊙OBC于點(diǎn)D,過(guò)DMN⊥AC于點(diǎn)M,交AB的延長(zhǎng)線于點(diǎn)N,過(guò)點(diǎn)BBG⊥MNG

1)求證:△BGD∽△DMA

2)求證:直線MN⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某賓館有50個(gè)房間供游客住宿,當(dāng)每個(gè)房間的房?jī)r(jià)為每天180元時(shí),房間會(huì)全部住滿,當(dāng)每個(gè)房間每天的房?jī)r(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑.賓館需對(duì)游客居住的每個(gè)房間每天支出20元的各種費(fèi)用.根據(jù)規(guī)定,每個(gè)房間每天的房?jī)r(jià)不得高于340元.設(shè)每個(gè)房間的房?jī)r(jià)每天增加x元(x10的正整數(shù)倍)

(1) 設(shè)一天訂住的房間數(shù)為y,直接寫(xiě)出yx的函數(shù)關(guān)系式

(2) 設(shè)賓館一天的利潤(rùn)為w元,求wx的函數(shù)關(guān)系式

(3) 一天訂住多少個(gè)房間時(shí),賓館的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案